

Ultra-High Energy Cosmic Rays

R. Engel, Auger Collaboration 2011

First AGN: M87

HST ACS

H. Curtis 1918:

"A curious straight ray lies in a gap in the nebulosity in p.a. 20 deg, apparently connected with the nucleus by a thin line of matter. The ray is brightest at its inner end, which is 11 arcsec, from the nucleus."

First AGN: M87

W. Baade & R. Minkowski 1954: M87 is radio source—suggests connection

"The interpretation which suggests itself is that the jet was formed by ejection from the nucleus and that the [OII] line is emitted by a part of the material which forms the jet and is still very close to, if not still inside the nucleus."

1956: Optical polarization suggests synchrotron

HST ACS

Kovalev' +16

3C273: VLBA, 1.7 GHz

3C273

Boettcher+'13

Radio

Elvis et al., 1994, ApJS, 95, 1

AGN Luminosity Function

Aversa+ '15

Hasinger+ '05

Emission Lines

AGN Diagnostics

Bamford+ '08

BL Lacs and Blazars

La Mura+ '17

Polarization

Polarization and the Hidden Nucleus of NGC 1068

Variability

Causality

- $\Delta R \leq c \Delta t$
- $\Delta t < 1 \,\mathrm{hr}$
- $\Delta R \leq 10^{14} \,\mathrm{cm} \sim 1 \,\mathrm{AU}$

Possible modes of formation of a massive black hole in a galactic nucleus.

215

AGN Taxonomy

Property	Popularity	С
Verv small angular size	Many	v
Galactic (or greater) luminosity	Many	Ļ
	v	b
Broad-band continuum	Most	С
Strong emission lines	Most	\mathbf{S}
Variable	Most	\mathbf{N}
Weakly polarized	Most	\sim
Radio emission	Minority	S
Strongly variable and polarized	Small minority	С
		•

- Table 1.1: The Menu
 - Comments and Exceptions
 - Vavelength-dependent
 - lower luminosity is hard to find; obscuration and
 - eaming may mislead
 - Often $dL/d\log\nu \simeq const$. from IR to X-rays; sometimes to γ -rays ometimes very broad, sometimes not
 - Modest amplitude; short wavelengths stronger, faster than long
 - 1% linear; a minority much stronger
 - Sometimes, but not always, extended on enormous scales
 - Correlated with bright radio and high-energy γ -rays;
 - in some cases emission lines absent

radio

BL Lacs

OVVs

- .

variability

Krolik 03

Pair Creation and Compactness

Mrk 421

Blazar Brightness Temps

detected objects in the sample.

FIG. 5. — Distribution of median brightness temperature values, T_b of VLBI cores in the complete MOJAVE sample. The shaded areas represent the LAT-

Inverse Compton Catastrophe

 $P_{\rm IC} \propto U_{\gamma}$

$U_{\gamma} = U_{\rm CMB} + U_{\rm IC} + U_{\rm sync}$

 $U_{\rm synch} = \frac{P_{\rm synch}}{c\Delta R^2}$

Variability in Ultra-Relativistic Flows

Jet Speeds?

Relativistivity Solves all $\delta \equiv \Gamma \left(1 - \right)$ timing and brightness issues $I_{\nu} = I_{\nu'} \delta^3 = I_{\nu} \delta^3$ $\delta^{-\beta} = \beta \cos(\theta)$ I_{ν}

 $\beta \cos(\theta)$

AGN Unification

Steffen+'02

M87, Radio galaxy = advection dominated flow

Low-Luminosity AGN

3C273, Quasar = radiative accretion flow

QSOs and Seyferts

Accretion disks as accelerators?

R. Engel, Auger Collaboration 2011

Accretion Parameters

- Luminosity:
- Accretion rates:
- Radial velocity:

Pressure:

 $\dot{M} = \lambda \dot{M}_{\rm Edd} \sim \lambda \times 2 \times 10^{-8} M_{\odot} \,{\rm yr}^{-1} \,M/M_{\odot}$

 $v_{\rm R} \sim \alpha v_{\rm K}$

 $B \sim 10^4 \,\mathrm{G} \,\left(\frac{\dot{M}}{\dot{M}_{\rm Edd}} \frac{10^9 M_{\odot}}{M}\right)^{1/2}$

B-field:

 $L = \lambda L_{\rm Edd} \sim 1.2 \times 10^{38} \, {\rm ergs \, s^{-1}} \, M/M_{\odot}$

 $p \sim \frac{c^4}{\eta G M \sigma T} \frac{\dot{M}}{\dot{M}_{\rm Edd}} \sim 10^7 \, {\rm ergs} \, {\rm cm}^{-3} \frac{\dot{M}}{\dot{M}_{\rm Edd}} \frac{10^9 M_{\odot}}{M}$

Evolution

- B-band QSOs
- IR-selected AGN
- ▲ 0.5-2 keV AGN
- A 2-10 keV AGN
- Steep Spectrum radio AGN
- Flat Spectrum radio AGN

Hopkins et al. (2007)

X-Ray Background

Black Hole Mass Density

X-Ray Background

1000

Merloni & Heinz 2008

AGN Hosts

Croton et al. 2006, Schawinski et al. 2009

Hickox et al. 2009

Hickox+ '09

Radio Loudness

Best+ '07

tha brighte Z S radio gals with 5 %

Radio AGN Environments

Best+ '07

X-ray AGN more strongly clustered

 Located in more massive halos?

- Radio AGN most strongly clustered
- Gamma-ray blazers similarly clustered
- Located in most massive halos

Blazar Clustering

Allevato+ '18

JETS: BLACK HOLE EXHAUST

Quasar 3C334 YLA 6cm image (c) NRAO 1996

 Black hole at the center <u>Mass</u> governs <u>scale</u> All other properties are functions of \star accretion rate \dot{m} \star spin a

 \star net external magnetic flux φ_B

Central Hypothesis

Jet Acceleration

Collimation

• Ballistic?

- ★ Requires tight initial collimation
- External confinement?
 - ★ Requires large external pressure

• MHD?

★ Requires stabilization

Jet Parameters

- B-fields: Gauss (pc scales) to mGauss (kpc scales)
- Lorentz Factor: 5 (M87) to 50 (Mojave)
- Power: 10^{42} ergs/s to 10^{47} ergs/s
- Composition: ???
- Hoop stress confinement:

Steffen+'02

Jet Parameters

