Honda flux

Sato (Nagoya U.) 14, Sep., 2019 @ Diffuse Workshop on Global Fit

contents

- ATMNC : atm. v flux calculation code
- attempt to handle had. int. uncertainty by Nagoya group
- ongoing status

Honda's ATMNC

ATMNC: ATMospheric Muon Neutrino Calculation code developed by M. Honda (U of Tokyo, ICRR) [PRD 83, 123001(2011) and references in it]

- used in Super-Kamiokande atm. v analysis
- Full & 3D simulation
- several ideas for high speed computation

ATMNC adopts *inclusive* code for speed-up Beam experiment for hadronic interaction measurement is usually *inclusive*

what they measure

- multiplicity n(pin) of hout
- **pout** distribution of hout
- **θ**out distribution of hout

Hadronic interaction in ATMNC is also *inclusive*

pre-simulated tables ignore $N(E_{in}), E_{out}(E_{in}), \theta(E_{in}, E_{out})$ multiplicity (N_{π+}) $h_{in} + Air \rightarrow h_{out} + X$ for p+air $\rightarrow \pi^{+,-,0}$ + X nultiplicity $(h_{out}: \pi^{+,-,0}, K^{+,-,0}, p, n, \bar{p}, \bar{n})$ ex) π^+ production from p + A 1) generate $N_{\pi+}(p_{in}) \pi^+s$ 2) p_{out} of each π^+ are randomly E of proton [GeV] pout- θ_{out} sampled from E_{out}/E_{in} distribution for p+air $\rightarrow \pi^+$ + X (visualize as 2D hist.) 3) projectile angle of the π^+ is heta_{out}[rad] also sampled from $\cos\theta$ 10^{9} 10^{8} 2.5 10^{7} distribution 10^{6} 10⁵ 1.5 10⁴ 10^{3} ... also the same for other particles 10² 0.5

- not correct for single CR event
- → by accumulating statistics, correct flux is reproduced

20

30

p_[GeV]

uncertainty of ATMNC flux

dominant uncertainty of ATMNC comes from the **uncertainty of hadronic interaction**

hadron interaction uncertainty

Honda-san's study using cosmic-ray muon flux

 μ & v are produced in the same mechanism

 \rightarrow response of μ flux to the change of hadron interaction strongly correlated to response of v flux

$$\frac{\Delta \phi_{\mu}}{\phi_{\mu}} \simeq \frac{\Delta \phi_{\nu_{\mu}}}{\phi_{\nu_{\mu}}} \simeq \frac{\Delta \phi_{\nu_{e}}}{\phi_{\nu_{e}}}$$

Unfortunately, µ correlated to <1GeV v has too low energy to observe at ground level

→ large uncertainty in <1 GeV

*In TAUP2019 Honda-san shows the possibility that µ at ~4500 m altitude covers the phase space of low-E v [arXiv:1908.08765 (astro-ph.HE)]

activity of Nagoya group

to reduce the uncertainty

Nagoya group Y. Itow H. Menjo K. Sato

start the study to incorporate the hadron production measurement by beam experiment into ATMNC directly

• Since this April

several measurement are conducted/planned (mainly for long-baseline v experiment) HARP, BNL, NA61/SHINE, EMPHATIC ...

→ reflect these measurement by referring the method used in T2K

to reduce the uncertainty

Nagoya group Y. Itow H. Menjo K. Sato

٠

start the study to incorporate the **hadron production measurement in beam experiment** into ATMNC directly

• Since this April

several measurement are conducted/planned (mainly for long-baseline v experiment) HARP, BNL, NA61/SHINE, EMPHATIC ...

→ reflect these measurement by referring the method used in T2K

Maybe the measurement data is insufficient but...

- will complement the phase space where Honda-san's muon study does not covered
- can reveal which phase space is important for atm. v simulation, and feed back to the future beam experiment

to reduce the uncertainty

Nagoya group Y. Itow H. Menjo K. Sato

٠

start the study to incorporate the **hadron production measurement in beam experiment** into ATMNC directly

• Since this April

several measurement are conducted/planned (mainly for long-baseline v experiment) HARP, BNL, NA61/SHINE, EMPHATIC ...

→ reflect these measurement by **referring the method used in T2K**

a common treatment of sys. error of hadronic interaction → can discuss correlation of sys. error between T2K and SK,HK

Maybe the measurement data is insufficient but...

- will complement the phase space where Honda-san's muon study does not covered
 - can reveal which phase space is important for atm. v simulation, and feed back to the beam experiment

weighting method in T2K

They correct their MC by applying weight. [ref: PRD 87, 012001 (2013)]

RAI/Be

12

requirement for beam measurement

check what beam measurement is needed for atm. v production

beamE?
kind of beam particle (h_{in}) and observable particle (h_{out})?

requirement for beam measurement

check what beam measurement is needed for atm. v production

kind of beam particle (h_{in}) and observable particle (h_{out})?

14

cont.

particle type of 2,3,...-th hadron causing hadronic interaction

peak of the incident p & n momentum ranges 5—100 GeV

beam energy : ~5-100 GeV

In sub- or multi- GeV region, p,n is dominant

beam particle : p

incident p,n momentum involved in hadron interaction in v_{μ} chain

suitable beam measurement

particle emitted from hadron interaction in v_μ chain (incident particle: proton)

kind of emitted particle

- π+-,p,n
- K+- also contributes

observed particle : π[±], K[±], p

- beam particle: p
- observed particle: p,π,K
- beam energy: ~5-100 GeV

	target	beam P [GeV]	h _{out}	ref.
HARP	Be	8.9	π+	Eur. Phys. J. C52(2007)
HARP	С	12	π+,π-	Astr. Phys. 29 (2008) 257
NA61/SHINE	С	31	р,π+-,К+-	Eur. Phy. J. C76 (2016)
BNL	Be	6.4,12.3,17.5	π+,π-	PRC77 015209 (2008)

Does measurement cover phase space?

 $4 < p_{in} < 8 \text{ GeV}$ $x_{out} = \pi^+$

0[rad]

We need some parameterization

- to cover phase space
- to scale to different incident energy

current status

apply weighting method to ATMNC

Weighting online is too time-consuming

- → restore h_{in}, p_{in}, h_{out}, p_{out}, x_{vtx} of all hadron interaction related to v hitting the detector
 - → apply weight at offline

Now finished to implement the weight for cross-section

impact of the weight for cross-section

next step: weight for p-θ

to do (in the next 1-2 months)

- make tables for HARP & BNL
 - parameterization to cover shortage of measured phase space
- scale to different beam energy

Then, evaluate how the uncertainty of beam experiment measurement propagate to v flux uncertainty.

summary

- Honda's ATMNC
 - Full & 3D simulation code to calculate atm. v flux
 - inclusive hadron interaction for speed up
 - main uncertainty comes from hadronic interaction
- activity of Nagoya group
 - incorporate the beam measurement for hadron production into ATMNC
 - implementing T2K-style weight
 - enables common treatment of the sys. uncertainty of hadronic interaction between T2K and SK
- current status
 - check the required phase space
 - implement the weight for cross section
 - now preparing the weight for p-θ distribution