Transient detector string development at WIPAC

Kyra Eierman, Quinn Fetterly, Kael Hanson, Ben Hokanson-Fasig, Thomas Meures, Kelsey O'Hara, Perry Sandstrom 04/28/2019

The main motivation

For Gen2, need to design a system for:

- mass production
- mass deployment
- mass operation
- Long term stability

Need to build:

- \rightarrow small electronics
- \rightarrow low power system
- \rightarrow simple electronics

The key ingredient: Transient detector assembly

Logarithmic amplifier – Working principle

Working principle:

- Chain of amplifiers, limited to rail
- Adding rectified signals from points in amplification chain
- Low pass filter on output

The Transient Detector Assembly

Waveform View	E			
"Neutrino pulse"				
				· · · · · · · · · · · · · · · · · · ·
				· · · · · -3 V
"Antenna output"				· · · · · · · · · · · · · · · · · · ·
	-20 ns 0's	s 20ns 40n 20 ns 40 ns	1S	-3 mV -4 mV 80 ns 100 ns -5 mV
TDA output				· · · · 500 mV · · · · 400 mV · · · · 300 mV
C3				200 mV 100 mV

The key ingredient: Transient detector assembly

Hard to provide:

- Sub ns timing precision
- Full information on frequency content of primary signal

Allows for:

- Timing precision ~1ns
- Low sampling rate at receiving end \rightarrow O(100MS/s)
 - \rightarrow low power consumption
 - \rightarrow no need for custom digitizers
- Lossy cables for transmission to surface
- Log detector \rightarrow 57dB dynamic range

Cable loss

 \rightarrow Add complication

Envelope attenuation through 300m of RG6 Coax

Timing precision

- Measure timing precision against scope trigger
- Use constant fraction discriminator at threshold 0.05 → Nothing too fancy
- Measured at 90% trigger efficiency

More features

Investigate single beam phased array

8 antennas, 1m spacing, add 4ns of cable between sensors

20-40ns pulse width → Beams overlap for most angles

Radio signal from neutrino

Arrival time difference between neighboring antennas: $-5ns \rightarrow +5ns$

Proof of Concept (SATRA) at IceCube Holes 6,9,16

Envelope waveforms recorded by SATRA

from 250m deep pulser ~350m distance

Hagar Landsman IceCube radio extension Status and results ARENA 2010

Concept of string system

Some expected features

Sensitivity:

- Simulation suggests improvement by factor 3.34 through all angles
- Still need to work out what that means for triggering
 - Depends on allowable noise rate
 - Trial factor for 12 beams (depends on allowable noise rate)

Power consumption estimate:

- TDA: <0.3W \rightarrow 5W per string + ~2W cable loss
- Digitizer: <600mW
- FPGA: <1W
- Auxiliary: regulators, summing amp, Ethernet Phy or SFP → another ~2W

Total <11W power consumption per string expected

Multiple applications:

- Can be used anywhere if 1ns timing precision is sufficient
- Low power consumption makes it interesting for large detectors with high number of strings

Current status

Route to South Pole

Goal:

- Proof manufacturability of low cost, low-power string system with high sensitivity
- Verify simulations/measurements (suggest promising sensitivity)
- Study if this system would be interesting for Gen2-radio
- Aim for test deployment in 2020/21 season

Status:

- We have key component: Transient Detector Assembly Allows for:
 - Low sampling rate at receiving end \rightarrow O(100MS/s) instead of O(3GS/s)
 - Lossy cables for transmission to surface
 - Log detector \rightarrow 57dB dynamic range
 - Wide range single beam forming
- String system partly integrated
- Test holes available for deployment
- Still lots to do ...

Backup

Measurement system

Need detector test system

Pulse generator can be fixed circuit with control only over timing, amplitude

radio station under tes

Ð

õ

Simulation of station and grid approach

Notes:

- trigger condition: at least 4 antennas on at least 3 strings
- Number of strings and number of antennas are constant for all types

Some observations:

- Widely same sensitivity, when covering same area
- Grid less sensitive at low energy, due to minimum string spacing

Ultimate detector quality:

- 1. \$/neutrino
- 2. Feasibility, Event quality

This includes:

- Robustness: lifetime, man-power
- Complexity: man-power
- Power consumption: costs
- Installation/construction effort: costs, man-power

ightarrow Need low cost, low power strings with high sensitivity

Is this feasible?

Rapid Air Movement (RAM) Drill

- 45m-50m holes in approximately 20 minutes each
- Drilled about 20 holes 4" diameter at NPX
- Drilled 200 x 4" diameter, 50m deep in one season at WAIS divide
- Air loss in porous firn limits hole depth to about 50m
- There are ideas to extend this to larger depth