

A brief history of radio at pole

Prof. Amy Connolly April 28, 2019

The plan for this talk

- Motivation for radio, in-ice detectors
- Early days
- Askaryan Radio Array
- SpiceCore
- Future

Motivation for radio in the ice

The case for going beyond optical

- ~ 10 cosmogenic neutrinos / km² / year
- 10¹⁸ eV: vN interaction length O(1000) km
- \rightarrow 0.01 neutrinos / km³ / year
 - At most, we see 1/2 the sky
 - \rightarrow 0.005 neutrinos / km³ / year
- Neutrinos from sources at a similar level

We need >100's of km³ detection volumes

Two classic approaches

Instrument the ice

View from a distance

Graphic: Oindree Banerjee

 Pure ice is low-loss for radio: field attenuation lengths ~1 km

RICE

• RICE (Radio Ice Cherenkov Experiment) 1995-2012

- Ilya Kravchenko, Dave Besson, et al.

The Ohio State University

- Antennas deployed along strings of AMANDA
 ~100-200 m depth
- World's best limits in energies between ~50 PeV-1 EeV for ~a decade

Other early efforts

RICENARCAURASATRAARARASTA

or

How many acronyms can one slide hold?

South Pole Under Ice RF instrumentation:

• RICE (Ilya Kravchenko)

Part of IceCube DAQ:

- "AURA" sub-working group (Full WF digitization)
 Askaryan Underice Radio Array
- "SATRA" sub-working group (Transient detection)
 Sensor Array for Transient Radio Astrophysics

Future independent collaboration:

• ARA – Askaryan Radio Array (Kara Hoffman)

South Pole Surface RF Instrumentation:

• Surface radio - RASTA – Radio Air Shower Transient Array (Sebastian Boser)

2008 "NARC" Neutrino Array Radio Calibration

ARA South Pole

ARIANNA Minna Bluff

Credit: Mike Duvernois, ARA/NSF

- Observes ~3 CRs/day
- Successfully run autonomously during summer months for ~10 years

Askaryan Radio Array

Askaryan Radio Array (ARA) Testbed

- Prototype station deployed
 2010-11 season
 - 16 HPol, VPol antennas down to 30 m

- Established feasibility of larger array
- Attenuation length measurement
- Diffuse flux limits
- Quasi-diffuse GRB limit
- Solar flares

Astropart.Phys. 35 (2012) 457-477 12

- Established feasibility of larger array
- Attenuation length measurement
- Diffuse flux limits
- Quasi-diffuse GRB limit
- Solar flares

- Established feasibility of larger array
- Attenuation length measurement
- Diffuse flux limits
- Quasi-diffuse GRB limit
- Solar flares

- Established feasibility of larger array
- Attenuation length measurement
- Diffuse flux limits
- Quasi-diffuse GRB limit
- Solar flares

- Established feasibility of larger array
- Attenuation length measurement
- Diffuse flux limits
- Quasi-diffuse GRB limit
- Solar flares

Astropart.Phys. 35 (2012) 457-477

Time (s)

USA

Cal Poly The Ohio State University Otterbein University University of Chicago University of Delaware

University of Kansas University of Maryland University of Nebraska University of Wisconsin-Madison Whittier College

International Collaborators

Chiba University National Taiwan University University College London Vrije Universiteit Brussel Weizmann Institue of Science

Neutrinos, Cosmic Rays, and Ice with ARA

17

THE OHIO STATE UNIVERSITY

Credit: Mike Duvernois, ARA/NSF

THE OHIO STATE UNIVERSITY

A1-3 Results

- Even quieter environment at deep
- Improved limits
- Ice properties

Phys.Rev. D93 (2016) no.8, 082003

19

A1-3 Results

- Even quieter environment at deep
- Improved limits
- Ice properties

A1-3 Results

- Even quieter environment at deep
- Improved limits
- Ice properties

Astropart.Phys. 108 (2019) 63-73

Small ~0.1% birefringence effect could aid in distance measurement \rightarrow energy THE OHIO STATE UNIVERSITY

Deep: A4-5

- Stations A4 and A5 most distant yet
- A5 with new phased array trigger

A4-5: ARAFE (Front End)

- Variable attenuators adjusted with microcontroller
- Correct for ~5 dB variation in attenuation during runtime
 - Better use of dynamic range
 - Can simplify analysis

Ohio State: paper in progress

THE OHIO STATE UNIVERSITY

Figure credit: Univ. of Chicago

- Calculate *summed correlation* in electronics before trigger decision
- Newly deployed in 2017-2018 in ARA station #5
 - signal-to-noise reduction as expected!

The Ohio State University

ARA5: Diffuse Searches

 Accumulated 5-station data expected to give world's best limits above 10¹⁹ eV The Ohio State University

ARA5: Source searches

- Wide field of view
- Sources continuously in view
 - 100s of GRBs
 - Exciting sensitivity to CenA: UHE neutrino emission may be expected Cuoco '08. Kachelriess '09

SpiceCore

The Ohio State University

Antarctic Ice Properties: Attenuation Length

- Pulsers deployed on IceCube strings 1 and 22 illuminate the entire array
- Pulse amplitude at A4 vs A5 is the longest horizontal-baseline measurement of L_{α}

 $\frac{SNR_{A5}}{SNR_{A4}} = \frac{r_4}{r_5} e^{\frac{r_4 - r_5}{L_{\alpha}}}$

Neutrinos, Cosmic Rays, and Ice with ARA

<u>The Ohio State University</u>

Antarctic Ice Properties: Constraining n(z)

- In Austral season '18 and '19, we deployed pulsers down the South Pole lceCore (SPIce) hole
- Time-difference between pulses is sensitive to n(z)

Future

THE OHIO STATE UNIVERSITY

Radio Neutrino Observatory

- Broad program astrophysics, particle physics
- Aims:
 - Astrophys. flux > 10^{16} eV
 - UHE flux to 10^{20} eV
- Building on existing arrays
 - Decade of Antarctic deployments
 - Data sets ~20 stationyears 31

Summary

- Radio in-ice has history going back to mid-90s
- Expertise built in detectors, deployments, analysis, simulations
- ARA5 will have world's best sensitivity above 10¹⁸
 eV until next generation detector is built
- Looking forward to RNO for the next leap

Thank you!