## RNO station hardware

E. Oberla 2019-4-28



# Will discuss RNO station hardware with a few key things in mind:

- Cost / reliability / scaling / meeting science targets
- The design of all RNO station components has to target large-scale production
  - >20 stations per year at height of RNO deployment. (61 total SP stations, several stations in the North)
  - Stations need to be ready-for-installation at time of shipping
  - → Automated test-stands for burn-in, reliability testing, and calibration

In addition to a production-oriented design from the onset, organized record keeping and databases will be crucial to having science-ready stations ready at the time of deployment.

#### This is not a Production Design





#### RNO station sub-systems

- Antennas + RF front-ends
  RF Signal / power transport
- **3)** DAQ [last-stage signal conditioning, digitization, trigger, control]
- 4) Calibration Tx
- 5) Station Power & Coms.

6) Environment enclosure / field access

#### Antennas

- 9-12 surface LPDAs (off-the-shelf CLP-5130-2N)
- 17 deep Vpols + 1-2 calibration
  - ARA bicone?
- 6 deep Hpols + 1-2 calibration?
  - ARA ferrite-loaded quad-slot?

~650 deep antennas per year at peak RNO deployment.

Worthwhile to investigate alternatives that are more suited to mass production

i.e. fat dipoles, narrowband slots, etc.  $\rightarrow$  requires input from simulations



#### RF front ends



- <u>ARA approach to deep antennas</u>: LNA at antenna, coax cables run up thru higher antennas, connect to a module that sits above just above the top antenna in the hole to convert all RF channels to fiber.
- Input notch filter can be abandoned

## RF front ends : integrated LNA / Optical Tx?

<u>The ARA5 phased-</u> <u>array approach</u>: LNA + optical Tx at each antenna, route optical fibers up through the string

Either way, we should have one front-end design that can be used for trigger and outrigger string antennas (and surface antennas, if possible, but different BW)

One test jig & procedure for all front-ends.





#### RFoF development

~\$100 / link (OZ450 = \$1200) 0.2-0.4W / link (OZ450 = 5 W) 10 or 30 dB link gain (OZ450 = ~20dB)



On-going optimization and performance testing. Could imagine merging the RFoF Tx and a first-stage LNA (to get NF down to 1dB) on a single-board.





### LAB4D digitization board

On-board waveform generation for in-situ calibration. Board will include a Schottky diode detector per channel for aux Hpol/surface trigger formation



Preliminary layout by P. Allison

### LAB4D performance

Minimal off-line chip calibrations required to get sciencegrade performance



Most, if not all, of the timebase calibration is done in the chip

https://arxiv.org/abs/1803.04600 Also, in use for T-576

## Phased Array trigger

Nominal plan to modify existing board for >50% power reduction, extended temp. range FPGA, adding the station master clock + a couple other small changes

Basically, turning-the-crank on a demonstrated lowthreshold trigger system. 7-bit digitization gives reasonable dynamic range for use in analysis as well.



Phased Array trigger, potential (lower-power) alternatives

- 3-bit flash digitizer will be developed if PUEO goes forward (~0.3W/channel)
- Low-resolution digitizers being developed for SKA
- Build a ~GHz low-resolution ADC directly into an FPGA using highspeed serial receivers?

These low-resolution digitizing possibilities, along with any envelopealignment triggers, would require splitting off signals to LAB4D channels to get reconstruction-quality data. Also, would require some level of prototyping investment for RNO.

### DAQ Controller board

- Phased array at ARA5 has had success using the <u>BeagleBone Black SBC</u> (\$75)+ serial links to ADC boards
- This functionality (1GHz ARM Cortex, Flash eMMC, DDR3, 2-port gigabit Ethernet MAC) is now available in an industrial-rated system-in-package: <u>OSD335x</u>

--> Put all of the station control into a single board. Simplified and streamlined





#### Schedule

| Calendar Year              | 2019 |   |    |   |    | 2020 |      |      |   |     | 2021 |       |   |   |   | 2022 |    |    |    |   |   | 20 |     |     |   |    | 2023 |     |      |      |      |     |     |   | 2024 |   |    |    |     |      |    |    |   |   |   |   |   |    |   |   |   |    |    |    |     |     |     |   |     |
|----------------------------|------|---|----|---|----|------|------|------|---|-----|------|-------|---|---|---|------|----|----|----|---|---|----|-----|-----|---|----|------|-----|------|------|------|-----|-----|---|------|---|----|----|-----|------|----|----|---|---|---|---|---|----|---|---|---|----|----|----|-----|-----|-----|---|-----|
|                            | 1 2  | 3 | 45 | 6 | 78 | 9 1  | 0 1: | l 12 | 1 | 2 3 | 34   | 5     | 6 | 7 | 8 | 9    | 10 | 11 | 12 | 1 | 2 | 3  | 3 4 | 4 ! | 5 | 6  | 7 8  | 8 9 | 9 10 | 0 1: | L 12 | 2 1 | 1 2 | 3 | 4    | 5 | 6  | 78 | 8 9 | 9 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 | 6  | 7 | 8 | 9 | 10 | 11 | 12 | 2 1 | . 2 | 2 3 | 4 | 5 6 |
| Project year               |      |   |    |   |    |      |      | PY   | 1 |     |      | · · · |   |   |   |      |    | F  | ργ | 2 | 2 |    |     |     |   |    |      |     |      |      | Pγ   | 1   | 3   |   |      |   |    |    |     |      | F  | γ  | 4 |   |   |   |   |    |   |   |   |    |    | PY | ' ! | 5   |     |   |     |
| Design work                |      |   |    |   |    |      |      |      |   |     |      |       |   |   |   |      |    |    |    |   |   |    |     |     |   |    |      |     |      |      |      |     |     |   |      |   |    |    |     |      |    |    |   |   |   |   |   |    |   |   |   |    |    |    |     |     |     |   |     |
| Preliminary Design Rev.    |      |   |    |   |    |      |      |      |   |     |      |       |   |   |   |      |    |    |    |   |   |    |     |     |   |    |      |     |      |      |      |     |     |   |      |   |    |    |     |      |    |    |   |   |   |   |   |    |   |   |   |    |    |    |     |     |     |   |     |
| Final Design Review        |      |   |    |   |    |      |      |      |   |     |      |       |   |   |   |      |    |    |    |   |   |    |     |     |   |    |      |     |      |      |      |     |     |   |      |   |    |    |     |      |    |    |   |   |   |   |   |    |   |   |   |    |    |    |     |     |     |   |     |
| Production Readiness Rev.  |      |   |    |   |    |      |      |      |   |     |      |       |   |   |   |      |    |    |    |   |   |    |     |     |   |    |      |     |      |      |      |     |     |   |      |   |    |    |     |      |    |    |   |   |   |   |   |    |   |   |   |    |    |    |     |     |     |   |     |
| Long lead, test systems    |      |   |    |   |    |      |      |      |   |     |      |       |   |   |   |      |    |    |    |   |   |    |     |     |   |    |      |     |      |      |      |     |     |   |      |   |    |    |     |      |    |    |   |   |   |   |   |    |   |   |   |    |    |    |     |     |     |   |     |
| Production (# of stations) |      |   |    |   |    |      |      |      |   |     |      |       |   | 6 | 5 |      |    |    |    |   |   |    |     |     | 1 | 16 | ;    |     |      |      |      |     |     |   |      |   | 26 | 5  |     |      |    |    |   |   |   |   |   | 18 | 8 |   |   |    |    |    |     |     |     |   |     |
| Deployment: equipm., plan  |      |   |    |   |    | Equ  | ipn  | nent |   |     |      |       |   |   |   |      |    |    |    |   |   |    |     |     |   |    |      |     |      |      |      |     |     |   |      |   |    |    |     |      |    |    |   |   |   |   |   |    |   |   |   |    |    |    |     |     |     |   |     |
| Deployment Reviews         |      |   |    |   |    |      |      |      |   |     |      |       |   |   |   |      |    |    |    |   |   |    |     |     |   |    |      |     |      |      |      |     |     |   |      |   |    |    |     |      |    |    |   |   |   |   |   |    |   |   |   |    |    |    |     |     |     |   |     |
| Deployment (# of stations) |      |   |    |   |    |      |      |      |   |     |      |       |   |   |   |      |    |    | 5  | 5 |   |    |     |     |   |    |      |     |      |      | 1    | .6  |     |   |      |   |    |    |     |      |    | 2  | 3 |   |   |   |   |    |   |   |   |    |    | 1  | .7  |     |     |   |     |

- We need to ramp up production work ASAP if 2020-21 deployment is happening.
- Plan to start up a standing RNO hardware call time in next couple weeks

#### RNO Subsystem to-do: 1) Antennas + RF front-ends

- Is there a path towards large scale production of ARA-like antennas?
  - To what degree are new/modified antenna designs needed?
  - Calibration plan is important polarization response key to reconstruction.
    Should have full system response on each channel before shipping
- Decide on a RF front-end architecture
  - Enclosure + LNA design + test-jig
- We should be running the front-ends with no more than 5V (3-3.3V is even better!)
  - ARA is running downhole RF front-ends at 12V, due to commercial RFoF power requirements. Burning a ton of heat in regulator drop-out.
  - The prototype UChicago RFoF Tx will run at 3V. So far so good with this development, pending low-temp tests

#### RNO Subsystem to-do: 2) RF Signal / power transport

- This is basically just cabling
- The downhole signal/power transport will depend on the RF-front end architecture choice
- Will still need a 'DTM'-like module at the top of each deep string to include a power-regulation stage + cable conversion
- Phased array timing mismatches primarily come from fiber-length differences within the tactical bundle -

## RNO Subsystem to-do: **3) DAQ**

- DAQ enclosure design
- Board designs:
  - 2<sup>nd</sup> stage signal conditioning (quad channel) + enclosures + test jigs
  - 16-channel LAB4D digitizing board design underway
  - Phased-array trigger board nominal design close to current
  - Controller board
- Good amount of code and test-stand development needed.
  - Good news is that the firmware for PA trigger and LAB4D digitizer control/readout well established.
- Proper EMI testing

#### RNO Subsystem to-do: 4) Calibration Tx

• Will have to be at least somewhat different than ARA to accommodate location in middle of string

RNO Subsystem to-do: 5) Station Power & Coms.

- Similar to ARA, a HV->15V DC-DC converter will live in a separate box
  - Proper EMI testing required
  - ARA currently uses 250W Vicors, should be able to redesign with ~125W converters without issue.
- A lot will depend on the power/network grid infrastructure decisions

## Prototype vs production

[slide from P. Allison, from DAQ meeting discussions at UCIrvine 2018]

#### Example: amplifier testing

#### Prototype amp testing: ~1 person-hour/station

- Connect VNA to input, output, power (1-2 minutes)
- Start testing script (current measurement, frequency sweep, current sweep), entering unique ID for amplifier (1-2 minutes)
- Disconnect, store tested amp when complete, fetch new amp (1-2 minutes)
- For 32+ channels per station, this becomes significant: on the order of 1 person-hour
- For production (O(100)) also have other concerns
  - VNA, power need a sacrificial connector (SMAs don't have 3000+ insert/remove cycles)
  - Calibration drift over time, etc.
- Production amp testing: ~2 person-*min*/station
  - Grab 4 boards from batch, place on jig and push down to secure. Jig autodetects presence of boards.
  - Replace with new batch when jig indicates test finished
  - Easily can reach 32 channels in under 2 minutes of person-time



[not including burn-in / temperature / etc]