Analytic heliospheric magnetic field modeling

Jens Kleimann¹ Christian Röken² Horst Fichtner¹

¹Theoretische Physik IV, Ruhr-Universität Bochum, Germany

²Institut für Mathematik, Universität Regensburg, Germany

4th Cosmic Ray Anisotropy Workshop Guadalajara, Mexico \diamond 12 October 2017

Talk outline:

The Base Model

Introduction and Idea Solution Properties

2 Improvements

Extension I: Non-circular Cross Sections Extension II: Compressible Flow (Some ideas for) Extension III: The Inside

- 1 Whang [2010]: Semi-infinite line of dipoles
- **2** Schwadron+ [2014]: $\nabla \times \mathbf{B} = \mathbf{0}$ on cylinder + half-sphere
- Isenberg+ [2015]: equivalent to ours (but with singularities)

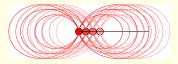
Ansatz: B should satisfy $\nabla \cdot \mathbf{B} = 0$ as well as $\nabla \times (\mathbf{u} \times \mathbf{B}) = \mathbf{0}$, with boundary condition $\mathbf{B}|_{x \to \infty} = \mathbf{B}_0$.

Prescribed flow: "*Rankine half-body* $\mathbf{u} = -\nabla \Phi$ with $\Phi = (q/r + z)u_0$ (point source plus background flow). Note that $\nabla \cdot \mathbf{u} = \mathbf{0}$.

1 Whang [2010]: Semi-infinite line of dipoles

- **2** Schwadron+ [2014]: $\nabla \times \mathbf{B} = \mathbf{0}$ on cylinder + half-sphere
- Isenberg+ [2015]: equivalent to ours (but with singularities)

Ansatz: B should satisfy $\nabla \cdot \mathbf{B} = 0$ as well as $\nabla \times (\mathbf{u} \times \mathbf{B}) = \mathbf{0}$, with boundary condition $\mathbf{B}|_{x \to \infty} = \mathbf{B}_0$.

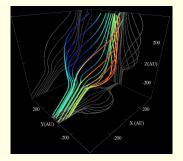


Prescribed flow: "Rankine half-body $\mathbf{u} = -\nabla \Phi$ with $\Phi = (q/r + z)u_0$ (point source plus background flow). Note that $\nabla \cdot \mathbf{u} = 0$.

- 1 Whang [2010]: Semi-infinite line of dipoles
- 2 Schwadron+ [2014]: $\nabla \times \mathbf{B} = \mathbf{0}$ on cylinder + half-sphere
- Isenberg+ [2015]: equivalent to ours (but with singularities)

Ansatz: B should satisfy $\nabla \cdot \mathbf{B} = 0$ as well as $\nabla \times (\mathbf{u} \times \mathbf{B}) = \mathbf{0}$, with boundary condition $\mathbf{B}|_{z\to\infty} = \mathbf{B}_0$.

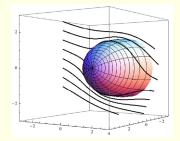
Prescribed flow: "Rankine half-body $\mathbf{u} = -\nabla \Phi$ with $\Phi = (q/r + z)u_0$ (point source plus background flow). Note that $\nabla \cdot \mathbf{u} = 0$.



- 1 Whang [2010]: Semi-infinite line of dipoles
- 2 Schwadron+ [2014]: $\nabla \times \mathbf{B} = \mathbf{0}$ on cylinder + half-sphere
- 3 Isenberg+ [2015]: equivalent to ours (but with singularities)

Ansatz: B should satisfy
$$\nabla \cdot \mathbf{B} = 0$$
 as well as $\nabla \times (\mathbf{u} \times \mathbf{B}) = \mathbf{0}$, with boundary condition $\mathbf{B}|_{z\to\infty} = \mathbf{B}_0$.

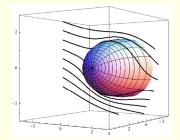
Prescribed flow: "Rankine half-body $\mathbf{u} = -\nabla \Phi$ with $\Phi = (q/r + z)u_0$ (point source plus background flow). Note that $\nabla \cdot \mathbf{u} = \mathbf{0}$.



- 1 Whang [2010]: Semi-infinite line of dipoles
- 2 Schwadron+ [2014]: $\nabla \times \mathbf{B} = \mathbf{0}$ on cylinder + half-sphere
- 3 Isenberg+ [2015]: equivalent to ours (but with singularities)

Ansatz: B should satisfy $\nabla \cdot \mathbf{B} = 0$ as well as $\nabla \times (\mathbf{u} \times \mathbf{B}) = \mathbf{0}$, with boundary condition $\mathbf{B}|_{z\to\infty} = \mathbf{B}_0$.

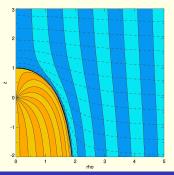
Prescribed flow: "Rankine half-body $\mathbf{u} = -\nabla \Phi$ with $\Phi = (q/r + z)u_0$ (point source plus background flow). Note that $\nabla \cdot \mathbf{u} = \mathbf{0}$.



- 1 Whang [2010]: Semi-infinite line of dipoles
- 2 Schwadron+ [2014]: $\nabla \times \mathbf{B} = \mathbf{0}$ on cylinder + half-sphere
- 8 Isenberg+ [2015]: equivalent to ours (but with singularities)

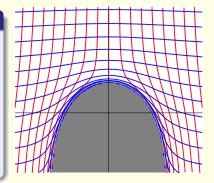
Ansatz: B should satisfy $\nabla \cdot \mathbf{B} = 0$ as well as $\nabla \times (\mathbf{u} \times \mathbf{B}) = \mathbf{0}$, with boundary condition $\mathbf{B}|_{z\to\infty} = \mathbf{B}_0$.

Prescribed flow: "*Rankine half-body*" $\mathbf{u} = -\nabla \Phi$ with $\Phi = (q/r + z)u_0$ (point source plus background flow). Note that $\nabla \cdot \mathbf{u} = 0$.



Key idea

- Stream lines and isochrones (lines of constant travel time *T*) form a non-orthog. coordinate system *K* exterior to HP.
- Advected B field components are <u>constant</u> w. r. t. *K* due to line conservation [Cauchy 1816].



Main difficulty

Analytic evaluation of ...along stream line

Key idea

- Stream lines and isochrones (lines of constant travel time *T*) form a non-orthog. coordinate system *K* exterior to HP.
- Advected B field components are <u>constant</u> w. r. t. *K* due to line conservation [Cauchy 1816].

Main difficulty

Analytic evaluation of ...along stream line

$$T(r,\vartheta) = \int_{\infty}^{r} \frac{\mathrm{d}r'}{u_{r}(r')} = \int_{0}^{\vartheta} \frac{r(\vartheta')\,\mathrm{d}\vartheta}{u_{\vartheta}(\vartheta')}$$

The exact solution [Röken+, ApJ 2015]

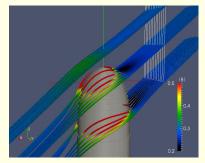
$$\begin{split} B_{\rho}(\rho,\varphi,z) &= -\frac{q\rho}{r^3} B_{z0} + \left[\frac{q^{3/2}\rho}{r^3 a} \mathcal{T} + \frac{a}{\rho} \left(1 + \frac{qz}{r^3}\right)\right] B_{\rho 0} \\ B_{\varphi}(\rho,\varphi,z) &= \frac{\rho}{a} B_{\varphi 0} \\ B_{z}(\rho,\varphi,z) &= \left(1 - \frac{qz}{r^3}\right) B_{z0} + \left[\left(\frac{qz}{r^3} - 1\right)\frac{\sqrt{q}}{a} \mathcal{T} + \frac{qz^2 a}{r^3 \rho^2}\right] B_{\rho 0} \end{split}$$

with $\mathbf{B}_0 = \mathbf{B}|_{\infty}$, incomplete elliptic integrals $\{\mathbf{F}, \mathbf{E}\}$, and

$$\mathcal{T} := (2 - \kappa^{-2}) \boldsymbol{E}(\lambda, \kappa) - (1 - \kappa^{-2}) \boldsymbol{F}(\lambda, \kappa) \left| \begin{array}{l} \lambda := \sqrt{1 - (\boldsymbol{a}/\rho)^2} \\ \boldsymbol{a} := \sqrt{\rho^2 + 2q(\boldsymbol{z}/r - 1)} \end{array} \right|_{\kappa} := \sqrt{1 + \boldsymbol{a}^2/(4q)}$$

Visualization of field line structure shows expected behavior:

- undisturbed ISM field at large distances from HP
- field lines do not penetrate HP, but drape around it, eventually becoming tangential to HP
- draping increases field strength (reaching ∞ on HP!)

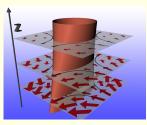


- **u** axially symmetric \Rightarrow heliotail has circular cross section (despite 'squeezing' due to **B**_{ism}). This is somewhat unrealistic...
- ...but can be fixed (i.e., adjusted to tailor-made aspect ratio $\eta(z) := a/b$ and area ($\propto a b$) using a distortion flow $\mathbf{w} \ (\neq \mathbf{u}!)$ and still remain exact if $\nabla(\nabla \cdot \mathbf{w}) = \mathbf{0}$. [Kleimann+, ApJ 2016]

w field on *z* planes

original **B** distorted **B**

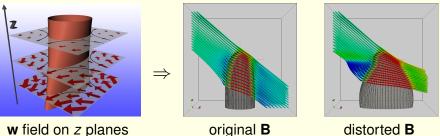
- u axially symmetric ⇒ heliotail has circular cross section (despite 'squeezing' due to B_{ism}). This is somewhat unrealistic...
- ...but can be fixed (i.e., adjusted to tailor-made aspect ratio $\eta(z) := a/b$ and area ($\propto a b$) using a distortion flow $\mathbf{w} \ (\neq \mathbf{u}!)$ and still remain exact if $\nabla(\nabla \cdot \mathbf{w}) = \mathbf{0}$. [Kleimann+, ApJ 2016]



w field on z planes

original **B** distorted **B**

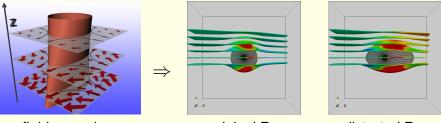
- u axially symmetric ⇒ heliotail has circular cross section (despite 'squeezing' due to \mathbf{B}_{ism}). This is somewhat unrealistic...
- ...but can be fixed (i.e., adjusted to tailor-made aspect ratio $\eta(z) := a/b$ and area ($\propto a b$) using a distortion flow **w** (\neq **u**!) and still remain exact if $\nabla(\nabla \cdot \mathbf{w}) = \mathbf{0}$. [Kleimann+, ApJ 2016]



w field on z planes

J. Kleimann Analytic heliospheric magnetic field modeling

- **u** axially symmetric \Rightarrow heliotail has circular cross section (despite 'squeezing' due to **B**_{ism}). This is somewhat unrealistic...
- ...but can be fixed (i.e., adjusted to tailor-made aspect ratio $\eta(z) := a/b$ and area ($\propto a b$) using a distortion flow $\mathbf{w} \ (\neq \mathbf{u}!)$ and still remain exact if $\nabla(\nabla \cdot \mathbf{w}) = \mathbf{0}$. [Kleimann+, ApJ 2016]



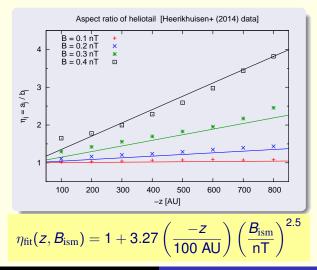
w field on z planes

original **B**

distorted **B**

Extension I: Non-circular Cross Sections Extension II: Compressible Flow (Some ideas for) Extension III: The Inside

Realistic parameters for $\eta(z, B_{ism})$ from simulations



J. Kleimann Analytic heliospheric magnetic field modeling

Extension I: Non-circular Cross Sections Extension II: Compressible Flow (Some ideas for) Extension III: The Inside

Model extension II: Compressible flow

Issues: 1. Incompressible flow condition questionable.

2. Constant density $n \Rightarrow$ no mass pile-up

 \Rightarrow B field undisturbed until very close to HP.

- **Issues**: 1. Incompressible flow condition questionable.
 - 2. Constant density $n \Rightarrow$ no mass pile-up
 - \Rightarrow B field undisturbed until very close to HP.
 - **Goal**: Create a compressible version of the model *without* having to re-do all the calculations.

- **Issues**: 1. Incompressible flow condition questionable.
 - 2. Constant density $n \Rightarrow$ no mass pile-up
 - \Rightarrow B field undisturbed until very close to HP.
 - **Goal**: Create a compressible version of the model *without* having to re-do all the calculations.
 - Idea: Use $-\nabla \Phi$ for *n* **u**, rather than just **u**!

- **Issues**: 1. Incompressible flow condition questionable.
 - 2. Constant density $n \Rightarrow$ no mass pile-up
 - \Rightarrow B field undisturbed until very close to HP.
 - **Goal**: Create a compressible version of the model *without* having to re-do all the calculations.
 - Idea: Use $-\nabla \Phi$ for *n* **u**, rather than just **u**!
- Effects: 1. Flow line structure unchanged.
 - 2. $\nabla \cdot (n \mathbf{u}) = \mathbf{0} \Rightarrow$ Built-in mass conservation.

- **Issues**: 1. Incompressible flow condition questionable.
 - 2. Constant density $n \Rightarrow$ no mass pile-up
 - \Rightarrow B field undisturbed until very close to HP.
 - **Goal**: Create a compressible version of the model *without* having to re-do all the calculations.
 - Idea: Use $-\nabla \Phi$ for *n* **u**, rather than just **u**!
- Effects: 1. Flow line structure unchanged.
 - 2. $\nabla \cdot (n \mathbf{u}) = \mathbf{0} \Rightarrow$ Built-in mass conservation.
- **Requires:** System closure through Bernoulli's law $(\mathbf{u} \cdot \nabla)\mathbf{u} = -(\nabla P)/n$ along flow lines, plus equation of state $P \propto n^{\gamma}$, $\gamma \in \{1, 5/3\}$

Key findings (density / flow field)

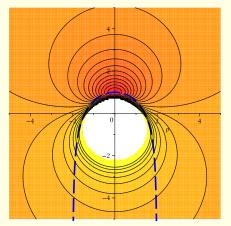
- 1 New parameter: upstream Mach number $m \in [0, 1[.$ $(m = 0 \Leftrightarrow n = \text{const.})$
- 2 n^2 can be expressed using Lambert's W function ($\gamma = 1$), or as root of a fourth-order polynomial ($\gamma = 5/3$).

3 Density looks plausible

Extension I: Non-circular Cross Sections Extension II: Compressible Flow (Some ideas for) Extension III: The Inside

Key findings (density / flow field)

- 1 New parameter: upstream Mach number $m \in [0, 1[.$ $(m = 0 \Leftrightarrow n = \text{const.})$
- 2 n^2 can be expressed using Lambert's W function ($\gamma = 1$), or as root of a fourth-order polynomial ($\gamma = 5/3$).
- 3 Density looks plausible

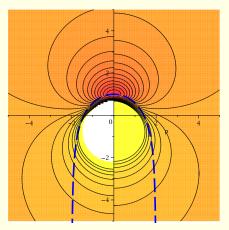


n contours ($\gamma = 1, m = 0.6$)

Extension I: Non-circular Cross Sections Extension II: Compressible Flow (Some ideas for) Extension III: The Inside

Key findings (density / flow field)

- 1 New parameter: upstream Mach number $m \in [0, 1[.$ $(m = 0 \Leftrightarrow n = \text{const.})$
- 2 n^2 can be expressed using Lambert's W function ($\gamma = 1$), or as root of a fourth-order polynomial ($\gamma = 5/3$).
- Obensity looks plausible; reasonable polynomial approximation for n



 n_{exact} vs. n_{approx} ($\gamma = 1, m = 0.6$)

Key findings (magnetic field) [Kleimann+, ApJ 2017]

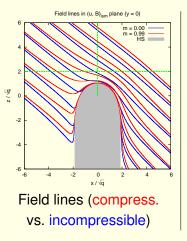
- **1** 'Compressible' (m > 0) **B** solution (w.r.t. \mathbf{u}_{approx}) can be expressed through known **B** solution of the m = 0 case (without using any "exotic" functions).
- 2 B now stronger in pile-up region near stagnation point.
- 3 The heliosphere's influence "reaches further out."
- <u>NB:</u> Approximation merely concerns momentum conservation. **B** thus derived from **u**_{approx} is again an <u>exact</u> MHD solution!

Key findings (magnetic field) [Kleimann+, ApJ 2017]

- **1** 'Compressible' (m > 0) **B** solution (w.r.t. \mathbf{u}_{approx}) can be expressed through known **B** solution of the m = 0 case (without using any "exotic" functions).
- 2 B now stronger in pile-up region near stagnation point.
- 3 The heliosphere's influence "reaches further out."
- <u>NB:</u> Approximation merely concerns momentum conservation. **B** thus derived from \mathbf{u}_{approx} is again an <u>exact MHD solution</u>!

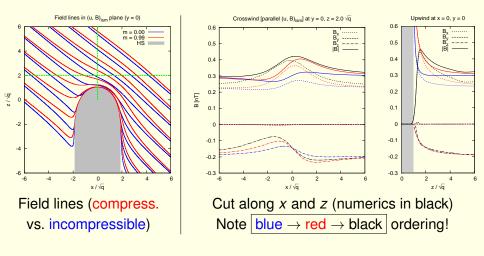
Extension I: Non-circular Cross Sections Extension II: Compressible Flow (Some ideas for) Extension III: The Inside

$\mathsf{Comparison} \; \mathbf{B}_{\mathrm{old}} \leftrightarrow \mathbf{B}_{\mathrm{new}}$



Extension I: Non-circular Cross Sections Extension II: Compressible Flow (Some ideas for) Extension III: The Inside

Comparison $\mathbf{B}_{old} \leftrightarrow \mathbf{B}_{new} \leftrightarrow$ self-consistent MHD sim.



Extension I: Non-circular Cross Sections Extension II: Compressible Flow (Some ideas for) Extension III: The Inside

Extension III: The actual heliospheric field

Goal: Extend method to the actual heliosphere (= HP interior). In principle, same PDEs with different boundary conditions.

Difficulties

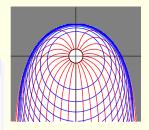
1 stream lines kink at termination shock (TS)

2 Inside TS: diverging $\|\nabla \Phi\| \propto 1/r^2$

I realistic time-dependent solar cycle BCs that leave ∇ · B = 0 intact

Minimal working example: magnetic rings

Parker spiral has $B_{\varphi} \gg B_r$ almost everywhere. $\mathbf{B}_0(\mathbf{r}_0, t) = B_0(r, \vartheta', t) \mathbf{e}_{\varphi'}$ in Sun system K'



Extension III: The actual heliospheric field

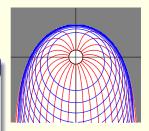
Goal: Extend method to the actual heliosphere (= HP interior). In principle, same PDEs with different boundary conditions.

Difficulties

- 1 stream lines kink at termination shock (TS)
- 2 Inside TS: diverging $\|\nabla \Phi\| \propto 1/r^2$
- **3** realistic time-dependent solar cycle BCs that leave $\nabla \cdot \mathbf{B} = 0$ intact

Minimal working example: magnetic rings

Parker spiral has $B_{\varphi} \gg B_r$ almost everywhere. $\mathbf{B}_0(\mathbf{r}_0, t) = B_0(r, \vartheta', t) \mathbf{e}_{\varphi'}$ in Sun system K'



Extension III: The actual heliospheric field

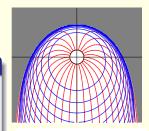
Goal: Extend method to the actual heliosphere (= HP interior). In principle, same PDEs with different boundary conditions.

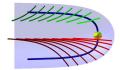
Difficulties

- 1 stream lines kink at termination shock (TS)
- 2 Inside TS: diverging $\|\nabla \Phi\| \propto 1/r^2$
- realistic time-dependent solar cycle BCs that leave ∇ · B = 0 intact

Minimal working example: magnetic rings

Parker spiral has $B_{\varphi} \gg B_r$ almost everywhere. $\mathbf{B}_0(\mathbf{r}_0, t) = B_0(r, \vartheta', t) \mathbf{e}_{\varphi'}$ in Sun system K'





Conclusions

- Existing exact analytical (2015) model of the local interstellar magnetic field frozen into the Rankine flow.
- Two-fold extension to (i) non-circular heliotail cross sections and (ii) mildly compressible flow without loss of generality or analytical tractability
- Exact(!) compressible magnetic field solution to now even closer to self-consistent MHD numerics.
- Extension to interior heliosphere ongoing.
 Tricky because of termination shock treatment – time-dependent solar BCs
- But: Good prospects for simpler "smoke ring" approach!

Conclusions

- Existing exact analytical (2015) model of the local interstellar magnetic field frozen into the Rankine flow.
- Two-fold extension to (i) non-circular heliotail cross sections and (ii) mildly compressible flow without loss of generality or analytical tractability
- Exact(!) compressible magnetic field solution to now even closer to self-consistent MHD numerics.
- Extension to interior heliosphere ongoing. Tricky because of – termination shock treatment – time-dependent solar BCs
- <u>But:</u> Good prospects for simpler "smoke ring" approach!

BACKUP SLIDES

Extension I: Non-circular Cross Sections Extension II: Compressible Flow (Some ideas for) Extension III: The Inside

A note on the approximation of non-existent solutions

Extension into "white" region

 lacks a measure of departure from "real" flow solution, but
 follows stream lines,
 conserves mass,
 and looks as expected.

Local(!) Mach number for $m \in \{0.25, 0.5, 0.75, 1.0\}$ along HP (Marks for up/cross/downwind)

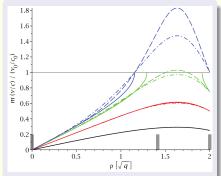
Extension I: Non-circular Cross Sections Extension II: Compressible Flow (Some ideas for) Extension III: The Inside

A note on the approximation of non-existent solutions

Extension into "white" region

 lacks a measure of departure from "real" flow solution, but
 follows stream lines,
 conserves mass,
 and looks as expected.

 $\frac{\text{NB:}}{(\text{supersonic, despite } m < 1)}$



Local(!) Mach number for $m \in \{0.25, 0.5, 0.75, 1.0\}$ along HP (Marks for up/cross/downwind)