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1 Introduction and objective of this note

This note is not meant to be an exhaustive review on the topic, for that please see the
referred literature at the end of this note. This note is intended to be minimal, but
useful. This attempts to cover three basic skills: parameter estimation, model selection,
and goodness-of-fit in the bayesian and frequentist frameworks.

2 What is probability?

2.1 Definition

Consider a coin. The probability of landing on heads or tails is 50% each. If we give C
a value that depends on the coin toss, then C is called a random variable. Then we can
write the probability of heads as

P(C = heads) = 0.5 (1)

and for tails
P(C = tails) = 0.5 (2)

C is said to belong to a coin toss distribution. If the coin were weighted, then the
probabilites of heads and tails would differ. C would then belong to a weighted coin toss
distribution. We can denote this as

C ∼ T (w) (3)

where T (w) represents the weighted coin distribution. This distribution is parameterized
by w, which gives the amount of bias that the coin has towards heads or tails.
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2.2 Basic discrete distributions

This coin toss distribution we introduced goes by another name in the statistics literature.
It is called a Bernoulli distribution, and represents the probability of a random variable X
being either 0 or 1 (which can be thought of as heads or tails).

X ∼ Ber(β) (4)

Here β gives the probability of X being 1:

P(X = 1) = β (5)

and thus is follows that
P(X = 0) = 1− β (6)

Probabilities must be between 0 and 1, so β must also be a real number between 0 and 1.
We rarely see a physical process that follows a Bernoulli distribution. Instead, a more

common distribution in physics is called the Poisson distribution.

X ∼ Pois(λ) (7)

This distribution gives the probability of seeing X events in a given period of time

P(X = k) =
e−λλk

k!
(8)

Here λ is the average number of events we expected to see. If we were looking in a time
interval t, and the rate of events was r, then λ = rt.

All probability distributions must be normalized. For discrete distributions, this means
that the sum of the probabilities for every possible outcome must be equal to 1. For
example, for the Poisson distribution:

∞∑
k=0

P(X = k) = 1 (9)

The mean of a distribution is also known as the average. It is usually denoted as µ and
is found by summing over all outcomes of the distribution:

µ =
∑

XP(X) (10)

This act of summing over all outcomes is called the expected value, or E:

µ = E[X] (11)
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The poisson distribution is defined such that

µ =
∞∑
k=0

kP(X = k) = λ (12)

The variance is a measure closely related to the mean. It gives the average squared
amount that the random variable X deviates from the mean:

σ2 = E[(X − µ)2] (13)

The variance is often denoted as σ2 because it is equal to the square of the standard
deviation, which is denoted as σ.

2.3 Basic continuous distributions

While the list of all possible outcomes for discrete probability distributions must be a
countable set. Continuous distributions are defined on an uncountably infinite set, usually
the set of real numbers.

The normalization condition now becomes an integral∫
S
p(x)dx = 1 (14)

where S is the set the distribution is defined on (usually some interval of the real number
line).

Note that if x has units of L, then p(x) must have units of 1/L for the units in the
integral to cancel. Thus p(x) is called a probability density.

By far the most common continuous distribution is called the normal distribution.

X ∼ N (µ, σ) (15)

where µ is the mean of the distribution, and σ is the standard deviation.
The probability density is a normalized Gaussian function

pX(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 (16)

2.4 Joined probability distributions and conditional probability

Suppose we have two random variables X and Y with probability distributions P(X) and
P(Y ). If X and Y are independent variables, the probability of seeing x and y is

P(X = x, Y = y) = P(X = x)P(Y = y) (17)
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This is called the joint probability distribution of X and Y . Note that when X and
Y are not independent, it is not possible to decompose the joint distribution into separate
distributions for each variable.

For example, suppose that we have a joint distribution

p(x, y) =
1√
6π
e−

2
3
(x2+y2−xy) (18)

Because of the xy term in the exponential, we cannot write this distribution as a product
of p(x) and p(y).

In this case, x and y are said to be correlated with each other.
We can find the probability of just y from a joint distribution by marginializing:

p(y) =

∫
S
p(x, y)dx (19)

For a discrete distribution, this takes the form of summing over all possible outcomes

P(Y = y) =
∑
x

P(X = x, Y = y) (20)

If X and Y are correlated, we may not be able to decompose the joint into a product
of separate distributions, but we can write it as a product of one separate distribution and
a conditional distribution:

P(X = x, Y = y) = P(X = x|Y = y)P(Y = y) (21)

The term P(X = x|Y = y) is read as the probability of X = x given that Y = y. It is a
way to write the effect of one random variable on the probability of another.

In this way, we can treat the parameter of a distribution as a random variable. For
example, the mean of the Poisson distribution λ can be treated as a random variable also.
Then if

X ∼ Pois(λ) (22)

the probability distribution can be written as

P(X = k|λ = L) =
Lke−L

k!
(23)

The notation P(X = k|λ = L) is cumbersome, so we often write this just as

P(k|λ) =
λke−λ

k!
(24)
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3 What is statistics?

3.1 Data, model, and likelihood

After running an experiment, we will have collected some data that we represent as d. For
example, we might have measured 100 radioactive decays in an hour, so d = 100.

As physicists, we need to construct a model that predicts our observed data. This can
be as complicated as S matrix elements in the standard model, or in our radioactive decay
example, as simple as a half-life.

With our model and data in hand, we can now find the probability of seeing this data
given our model. This probability distribution is called the likelihood. It is a conditional
distribution, giving the probability of d given a parameter for our model θ.

P(d|θ) (25)

This is often written using the symbol L as shorthand:

L(θ) := P(d|θ) (26)

In our example, the likelihood is the Poisson distribution where λ = ln(2)/t1/2:

L(t1/2) = PPois(d| ln(2)/t1/2) (27)

3.2 Multiple measurements

Suppose our experiment produced two results, d1 and d2. Most often, these measurements
are independent, so we can write the likelihood as a product of the individual likelihoods
for each measurement.

L(θ) = P(d1|θ)P(d2|θ) (28)

Often we generalize this to arbitrary measurements using vector notation. Let

~d = (d1, d2, . . .) (29)

then
L(θ) = P(~d|θ) (30)

While the methods discussed in the remainder of this document generalizes to many
measurements, we will avoid littering the equations with vector notation.
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3.3 Binning

When an experiment produces large numbers of events, it is prudent to organize them into
bins. Each bin spans a small range of an observable, and the value of each bin is equal to
the number of events that land in this range.

For example, suppose we have a neutrino detector that measures neutrino events as a
function of energy. We can define three bins:

Bin1 = [0 TeV, 100 TeV]

Bin2 = [100 TeV, 10 PeV]

Bin3 = [10 PeV,∞]

Note that the last bin extends to infinity. It is important that our bins the entire range of
energies that the detector could measure, even if there are no events found there.

However, often an experiment’s sensitivity becomes negligible below or above a certain
energy, and the bins do not have to extent past these points as additional bins would no
effect the final result.

We then define d1, d2, d3 to be the number of events that land in each bin, and the
likelihood can be written as a product of Poisson distributions for each d as the events are
independent of each other.

4 Bayesian inference

So far we’ve introduced the likelihood: the probability of seeing some data given some
model parameters. However, we are generally not interested in making statements about
the measurements of an experiment. Instead, we want to talk about the model parameters
and how our measurements affect our estimates of these parameters.

To do this, we need a conditional probability distribution of the model parameters given
our data:

P(θ|d) (31)

The process of finding this distribution, and how to interpret it is called Bayesian
statistics.

4.1 Bayes’ theorem

We start from the definition of conditional probability

P(d, θ) = P(d|θ)P(θ). (32)

Notice that we can also write this as

P(d, θ) = P(θ|d)P(d) (33)

6



Equating the two definitions gives

P(θ|d)P(d) = P(d|θ)P(θ) (34)

This is known as Bayes theorem, and is usually written as

P(θ|d) =
P(d|θ)P(θ)

P(d)
(35)

The term P(d|θ) is the likelihood that we recognize form earlier, so we can also write
this as

P(θ|d) =
L(θ)P(θ)

P(d)
(36)

The unconditional distribution P (θ) is called the prior, while the conditional distribu-
tion P(θ|d) is called the posterior. The names represent the probability of θ before and
after taking into account our data d.

4.2 Priors

The prior encodes information about the parameter that we knew before measuring our
data. For example, we might know what values a cross-section should take based on other
experiments.

However, if we’re testing an entirely new model (for example, some beyond the standard
model) then we don’t have any previous information about the parameter. In this case we
need to choose an uninformative prior, one that has as little information as possible in it.

The uniform distribution has the least information of any probability distribution.
And so the uniform distribution is often a good choice for the prior. However, the uniform
distribution requires boundaries , otherwise it is not normalizable. This can pose a problem
if the natural range of the parameter is infinite.

Additionally, the uniform distribution is not much of a help if the distribution is con-
tinuous. Suppose we have a prior and likelihood defined as∫

L(θ)P(θ)dθ (37)

and we choose P(θ) = 1/L as a uniform distribution in [0, L]. Thus, the integral is∫ L

0
L(θ)

1

L
dθ (38)

Now, we can make a transformation of variables φ = eθ. So

dφ = eθdθ

dφ

φ
= dθ
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Now the integral can be written as∫ eL

1
L(φ)

1

Lφ
dφ (39)

In these coordinates, the prior is no longer uniform

P(φ) =
1

Lφ
, (40)

and is now a power law.
For these reasons, there is often no single best choice of prior. Instead, we should aim

to select a weak prior: one that has a weak effect on our final results. If the parameter
range is finite, then a uniform distribution can work. If it is infinite, then a very wide
normal distribution is usually the best choice.

4.3 Posterior

After selection of our prior, all that remains is to calculate the posterior P(θ|D). To do
this, we need to find

P(d) =

∫
P(d|θ)P (θ)dθ (41)

This is known as the evidence integral (for reasons that are explained later) and is
generally very hard to compute directly when the number of parameters is high.

Note that, for now, we don’t actually care about the value of P(d); we only need it
for normalizing the posterior. We could sidestep the evidence integral entirely by drawing
random samples directly out of the posterior distribution. This is possible because the
shape of the posterior only depends on the likelihood and prior, which are easy to calculate.

The algorithm for drawing these samples is called a Markov Chain Monte-Carlo (MCMC).
There are many different kinds of MCMCs, each one designed to optimize for a specific use
case.

Measures of the posterior (such as mean, standard deviation, or those discussed in
the next section) can be estimated from these samples. The posterior itself can even be
estimated using the density of the samples.

4.4 Parameter estimation and credibility regions

When reporting results, it is useful to be able to condense the posterior down into a few
numbers of easy to read plots.

The easiest to understand is the location in parameter space that maximizes the pos-
terior:

θ̂ = argmax
θ

p(θ|d) (42)
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Figure 1: A pathological distribution.
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Figure 2: Another pathological distribution.
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This is called the maximum a posteriori (MAP) probability estimator. It is kind of like
the best fit, but also includes information from the prior.

The MAP can sometimes be misleading, consider the distribution in figure 1. The
MAP gives a value of 3, characterizing an important part of the distribution (the spike).
However, it ignores a more important part of the distribution, that most of the probability
lies in the area around 2.

The mean of this posterior is 2.1, and while this is a better indicator of where the
probability lies, the mean is not a reliable measure either. Consider the distribution in
Figure 2. The mean of this distribution is 2.5, completely missing all of the probability.

4.4.1 Credibility regions

Given this, it seems prudent to report an interval where most of the probability lies, instead
of just a single number. For figure 1 this could be a single interval of [0.8, 3.2], and for
figure 2 this could be two intervals [1.9, 2.1] and [2.9, 3.1].

To be more specific, we define a credibility interval C(α) by

1− α =

∫
C(α)

p(θ|d)dθ (43)

which encloses (1−α)% of the probability of the posterior. For example, a 90% credibility
interval would be C(0.1).

There is no single solution for C(α); i.e. there are many equally valid regions for any
values of α.

The most common solution when multiple parameters are involved is the highest pos-
terior density credibility interval. It is defined so that all points inside the interval have a
higher probability density than all points outside the interval.

Mathematically, we find a value fα that defines the interval by all points that have a
probability density greater than fα:

CHPD(α) = {θ : p(θ|d) ≥ fα} (44)

The value of fα has to be chosen such that equation 43 is satisfied.
Graphically, this can be thought of as drawing a horizontal line through the distribution

such that the integral over all areas where the posterior is higher than the line equals 1−α.

4.5 Bayes factor and model selection

Suppose we have two models (M0 and M1) for our data (e.g. a power law and broken
power law) and we wish to figure out which one is favoured by the data we measure.

To do this, we need to find the posterior probability of our model given the measured
data: P(M0|d). This can be done using Bayes theorem,

P(M0|d) =
P(d|M0)P(M0)

P(d)
(45)
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Figure 3: An example of the graphical method for determining the 80% HPD credibility
interval.

The term in the denominator P(d) is, in general, impossible to compute, as it involves
marginalizing over all possible models. This term can be neatly cancelled out by taking
the ratio of the posteriors for each of our two models:

P(M0|d)

P(M1|d)
=

P(d|M0)P(M0)

P(d|M1)P(M1)
(46)

This can be seen as the product of two factors: the ratio of the priors, and a term we
call the Bayes factor.

B01 =
P(d|M0)

P(d|M1)
(47)

The P(d|M0) can be recognized as the evidence integral mentioned previously. It is
calculated by marginalizing the likelihood for M0 over the model parameters

P(d|M0) =

∫
P(d|θ,M0)P(θ|M0)dθ (48)

A similar construction is used to find P(d|M1). The likelihood functions for M0 and M1

could be different, and have different numbers of parameters, hence the need to condition
the likelihood on the model as well.

The Bayes factor tells us how much the data favours one model over another in a prior
independent way. Note that this is only independent of the model priors, not the priors on
the parameters.
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If the model priors are equal (their ratio is unity) then the Bayes factor can be used
alone to weight the evidence. The following table provides a suggestion on how to interpret
the computed value.

B Strength of evidence for M0

1 - 3 Not worth mentioning
3 - 20 Positive

20 to 150 Strong
> 150 Overwhelming

Factors less than 1 favour M1 in a similar fashion.
If model priors differ, then they must be taken into account before deciding which

model is more probable. When the difference in priors is substantial (for example, when
considering the probability of a teapot orbiting the sun) then the Bayes factor will have
to also be substantial to compensate. Thus, extraordinary claims require extraordinary
evidence integrals.

5 Frequentist approach

In the previous section we discussed the Bayesian paradigm of statistical inference. In this
section we will discuss the frequentist counterpart. As the name indicates the frequentist
approach defines the probability of an event by means of its chance of repetition. Thus,
e.g., when we say that the probability that a fair coin will yield head is 1/2 it means that
if I throw the coin a large number of times approximately half of the time it will yield
head. Thus remember that frequentist statements are not statements about the physical
parameters, but of the distribution of random variables known as test statistics.

In what follows we will describe various techniques accomplish the following tasks:
obtain best model parameters, confidence intervals, compare models, and estimate the
goodness-of-fit (gof). These procedures will make use of a test statistic, which often is
either the likelihood function or a chi-square statistic. Even though these objects are used
across all of this tasks its not to confuse them [1].

5.1 Test statistics

A frequently used test statistics is the χ2 statistics which is defines as follows

χ2
k(θ) =

k∑
i=1

(xi − µi(θ))2

σ2i
, (49)

where xi are the observation, µi the expected observation given the model, and σi the
uncertainty in the measurement of xi.
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5.2 p-values and goodness-of-fit

For a χ2 test-statistics we can define the goodness-of-fit p-value as

pvalue = P(χ2 > χ2
obs), (50)

this definition is illustrated in Figure 4. This definition can be generalized for any T S in

Figure 4: p-value sketch. Source wikipedia!

the following way
pvalue = P(T S > T Sobs) (51)

Another useful test statistics to calculate goodness-of-fit is called the deviance which is
defined as follows

D(θ) = −2(logL(θ)− logLs) (52)

where logLs is known as the saturated likelihood. In the case of a poisson likelihood this
is just given by

logLs = logP(x|λ = x) (53)

it can be shown that, with large statistics, D ∼ χ2
k, which makes the deviance a natural

extension of the χ2-goodness-of-fit test.
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5.3 Parameter estimation and confidence regions

5.3.1 Parameter estimation

A parameter estimator is defined as

θ̂ := argmin
θ

T S(θ). (54)

Common choices of T S that provide unbiassed estimators are χ2 and D(θ) or L. In the
case of the deviance or likelihood usage this estimator is known as the maximum likelihood
estimator (MLE). Since the likelihood values are often very small to manage numerically
we often maximize the logL, i.e.

θ̂ = argmax
θ

logL(θ), (55)

or, equivalentely,
θ̂ = argmin

θ
(− logL(θ)) . (56)

5.3.2 Confidence region construction

The Neyman confidence interval construction that we will briefly described here consist on
two steps:

1. construction of the confidence belt,

2. inversion of the confidence belt to obtain the confidence region.

The confidence belt construction is related to two important elements. The first of
them is to state the the confidence region satisfies the following condition

1− α = P(T S0 < T S < TS1) =

∫ T S1
T S0

pT S(T S; θ)dT S. (57)

Its clear that this does not uniquely define T Si. This fact brings us to the next element
known as the ordering rule. The ordering rule is the prescription that will be used to
include elements into the confidence belt so as to satisfy 57. Three popular choices exist

• Two-sided interval: P(TS < TS0) = P(TS > TS1) = α/2,

• One-sided upper interval: T S0 = 0 and set P(TS > TS1) = α,

• One-sided lower interval: T S1 =∞ and set P(TS < TS0) = α.
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Figure 5: Three possible choices of ordering rule described in the text. Note that in this
note notation x = T S. Graphic obtained from [2].
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These choices are illustrated in Figure 5.
We often use Wilks’ theorem to construct confidence region. In this case its practical

to define the following T S
T S(θ) = χ2(θ)− χ2

min. (58)

Then T S ∼ χ2
dof where the numebr of dof is the number of observations minus the number

of parameters. in this case the confidence region is given by

C = {θ : T S < TS1} (59)

where the threshold values for a ∆χ2 and 2∆ logL T S can be found in Table 5.3.2.

(1− α)(%) dof = 1 dof = 2 dof = 3

68.27 1.00 2.30 3.53
90.00 2.71 4.61 6.25
95.00 3.84 5.99 7.82
95.45 4.00 6.18 8.03
99.00 6.63 9.21 11.34
99.73 9.00 11.83 14.16

Table 1: From [3] values of ∆χ2 and 2∆ logL corresponding to a coverage probability of
1− α.

It was pointed out by Feldman-Cousin [4] that an a posteriori choice of ordering pro-
duces confidence regions with the wrong coverage, this is illustrated in Figure 6. They
established a new ordering known as the Feldman-Cousin ordering principle which does
not require to decide in ordering before making the measurement. This ordering is estab-
lishes that you should add T S values to your confidence belt according to

R(T S, θ) :=
pT S(T S; θ)

pT S(T S; θ̂)
. (60)

5.4 Likelihood ratio and model selection

Given two models (hypothesis) H0 and H1(θ) where H0 = H1(θ̃), i.e. they are nested
models. Then the Neyman-Pearson lemma states that the likelihood ratio test defined as

Λ =
L(θ̃)

L(θ̂)
. (61)

has the strongest statistical power (i.e. correctly rejects H0 when H1 is true) while at the
same time given the smallest probability false positive (i.e. rejecting H0 in favor of H1

when H0 is true). Its customary to then define the T S = −2 log Λ if the p-value according
for this T S, drawn from null like realization, is small then the null is rejected.
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Figure 6: Illustration of the flip-flop problem from [2].
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