IceCube event reconstruction

Tianlu Yuan IceCube Bootcamp June 19, 2018

IceCube

Detection principals

Neutrino interacts via weak force with targets in ice

• At IceCube energies, primarily deep-inelastic scattering (DIS) off nucleons

Nucleon breaks apart; outgoing particles may be charged Charged particles emit **Cherenkov radiation** detectable by PMTs

Cherenkov radiation

Occurs when a charged particle travels faster than light-in-medium

Constructive interference of EM-field to form a plane wave

Fig. 14.14 Cherenkov radiation. Spherical wavelets of fields of a particle traveling less than, and greater than, the velocity of light in the medium. For v > c, an electromagnetic "shock" wave appears, moving in the direction given by the Cherenkov angle θ_c .

Cherenkov radiation in water

What do neutrinos look like in IceCube?

muons: long paths in the detector \rightarrow **track**

What do neutrinos look like in IceCube?

electrons/hadrons: shower of light → **cascade**

What IceCube actually sees

$$\nu_\mu + N \to \mu + X$$

track (data)

angular resolution ~ 0.5° energy resolution ~ x2

NC or CC electron neutrino

$$\nu_e + N \to e + X$$

 $\nu_x + N \to \nu_x + X$

shower (data)

angular resolution ~ 10° energy resolution ~ 15%

CC tau neutrino

- $\nu_\tau + N \to \tau + X$
- "double-bang" (simulation)

~2 expected in 6 years

Event reconstruction

Emitted

 $\boldsymbol{\Theta} = (x, y, z, \theta, \phi, E, t)$

Maximize $\mathcal{L}(\boldsymbol{\Theta}|X_{Data})$

 $X = q_{DOM}\left(t\right)$

Physics parameters and IceCube coordinates

 $\boldsymbol{\Theta} = (x, y, z, \theta, \phi, E, t)$

Detector coordinate system centered in middle of detector

 (θ, ϕ) = (zenith, azimuth) corresponds to *arrival* direction Usually, (θ, ϕ, E) are the physics parameters we're most interested in

Tracks

• Use first-hit times for *directional* reconstruction (SplineSPE, SANTA)

Juan Pablo Yanez

Tracks

- Use **first-hit times** for *directional* reconstruction (SplineSPE, SANTA)
- Use **full-waveform** information by fitting predicted light yields to what is actually seen (MuEx, Millipede, DirectFit, DirectReco)
- Millipede works for **high-energy tracks** by breaking it up into multiple cascades along the track due to muon stochastic energy losses

Tracks

- Use **first-hit times** for *directional* reconstruction (SplineSPE, SANTA)
- Use **full-waveform** information by fitting predicted light yields to what is actually seen (MuEx, Millipede, DirectFit, DirectReco)
- Millipede works for **high-energy tracks** by breaking it up into multiple cascades along the track due to muon stochastic energy losses

Cascades

- Use **full-waveform** information by fitting predicted light yields to what is actually seen (Monopod, DirectFit, DirectReco)
- Train a Deep Neural Net on simulation (DNN)

Challenges in cascade reconstruction

Large distances between DOMs means not many detected photons Small asymmetry means high dependence on ice modeling

Sheer number of photons difficult to simulate

- 1. Tabulate photon yields for a single ice model (Millipede/Monopod)
 - Fast, less flexible, table generation time-consuming
- 2. Directly propagate all photons for any ice model (DirectFit)
 - Slow, more flexible

Two approaches to **full-waveform** reconstruction

Tabulated photon yields

- Pros: Fast runtime; gradients
- Cons: Limited ice-models

Direct photon propagation

- Pros: Any ice-model can be used
- Cons: Statistical errors from both data and MC; slow

IC collaboration, 1311.4767 D. Chirkin, arXiv:1304.0735

Minimization approaches

Given a likelihood $\mathcal{L}(\Theta|X_{\text{Data}})$ as a function of $\Theta = (x, y, z, \theta, \phi, E, t)$, want to find Θ_0 that minimizes the negative likelihood

Need to explore 7D space which is challenging

Millipede/Monopod uses photon tables which allows for iterative gradient descent

Cascade orientation from full-waveform

Differences between bestfit and reversed-orientation from Monopod

Time-windows where PMT saturates or calibration failed are shaded

Minimization approaches

Given a likelihood $\mathcal{L}(\Theta|X_{\text{Data}})$ as a function of $\Theta = (x, y, z, \theta, \phi, E, t)$, want to find Θ_0 that minimizes the negative likelihood

Need to explore 7D space which is challenging

- Millipede/Monopod uses photon tables which allows for iterative gradient descent
 - Doesn't always find the global minimum
- Can also **brute force** all possible directions (θ, ϕ) to reduce the minimization to only 5 dimensions

Monopod LLH skymap for cascade

Cascade vs track skymap

Given a likelihood $\mathcal{L}(\Theta|X_{\text{Data}})$ as a function of $\Theta = (x, y, z, \theta, \phi, E, t)$, want to find Θ_0 that minimizes the negative-likelihood

Need to explore 7D space which is challenging

- Millipede/Monopod uses photon tables which allows for iterative gradient descent
 - Doesn't always find the global minimum
- Can also **brute force** all possible directions (θ, ϕ) to reduce the minimization to only 5 dimensions
- > DirectFit attempts to find minimum using **localized random search**, randomly sampling points in (x, y, z, θ, ϕ) within a "search radius" that is refined iteratively

DirectFit minimization

Likelihood gradually improves from start to finish

Following this, MCMC approach to sample from posterior pdf

Ice modeling is important!

Bulk ice described by scattering and absorption coefficients as a function of depth \rightarrow these have been refined over time

Ice layers were found to be tilted [arXiv:1301.5361]

Ice was also discovered to be anisotropic [ICRC 2013, 0580]

550

23

Directional bias due to different ice models

Previous HESE reconstruction uses photon tables for older ice model

Reduction in bias with updated ice model

Better agreement with updated tables that includes anisotropy [PoS(ICRC2017), 974]

Local effects

Hole-ice

 Refrozen central column with high scattering

Looking up the string

DOM orientation

- Thick, support cable may impede direct photons if vertex is nearby
- A few DOMs may not be perfectly horizontal

Local effects: DOM orientation and cable position

Ice uncertainties affect reconstructed directions

Directional uncertainties important for point-source searches

With Millipede/Monopod full-sky scan, can draw a contour at some value of Δllh derived from resimulations with different ice models

With DirectFit, can reconstruct with different ice-models and combine into larger contour

Reconstruction in IceCube is often a challenge

Many algorithms exist, separable into high-energy/lowenergy and track/shower

Each has pros and cons

Ice models are important; try to use the latest version available

Didn't talk about <u>multinest</u>, <u>Spline-reco</u>, <u>DNN</u>

Backups