
Intro to IceTray
Madison Bootcamp 2018

Alex Olivas

IceTray : The Definitive Guide

Documentation is built nightly:
http://software.icecube.wisc.edu/documentation/projects/icetray/index.html

If you see something, say something.
http://code.icecube.wisc.edu/projects/icecube/newticket

Please, please, please file a ticket if you find issues with IceTray documentation.
We can't fix problems we don't know about.

http://software.icecube.wisc.edu/documentation/projects/icetray/index.html
http://code.icecube.wisc.edu/projects/icecube/newticket

The Ticketing System http://code.icecube.wisc.edu

Creating a new ticket is
very easy.

All ticket changes are
reported in #software on
Slack.

http://code.icecube.wisc.edu

The Ticketing System http://code.icecube.wisc.edu

One and only one hard and fast rule:

Do not submit tickets as 'icecube'

Fill in the fields as best you can.

Convention: In the description, it's
helpful, but not necessary, to start
with the project name in square
brackets.

http://code.icecube.wisc.edu

IceTray : A Very Brief Introduction

I3Tray

I3Module I3Module I3Module
I3Frame I3Frame

IceTray is the framework whose responsibility is to manage
interactions between user-defined I3Modules, passing
I3Frames from module to module.

● I3Frame - Data Container
● I3Module - Take data out of the frame, process, add data to the frame.

IceTray : The I3Frame and I3Module

I3Tray

I3Module I3Module I3Module
I3Frame I3Frame

I3Frame - Dictionary with string keys and "frame objects" values.

*Trivia : Unlike true python dictionaries, which can store objects of any type, I3Frames can only
contain objects which inherit from I3FrameObject. Driven by C++ design.

*Trivia : I3Frame is actually a C++ class which manages map<string, shared_ptr<I3FrameObject>>

Nearly all I3FrameObjects are collected in three projects: dataclasses, simclasses, recclasses.
● dataclasses - http://software.icecube.wisc.edu/documentation/projects/dataclasses/index.html
● simclasses - http://software.icecube.wisc.edu/documentation/projects/simclasses/index.html
● recclasses - http://software.icecube.wisc.edu/documentation/projects/recclasses/index.html

http://software.icecube.wisc.edu/documentation/projects/dataclasses/index.html
http://software.icecube.wisc.edu/documentation/projects/simclasses/index.html
http://software.icecube.wisc.edu/documentation/projects/recclasses/index.html

IceTray : I3FrameObjects

I3MCTree "is-a" (i.e. inherits from)
I3FrameObject, found in dataclasses.

A list of numbers is not an I3FrameObject.

IceTray : I3FrameObjects

IceTray : I3Context and I3Services

I3Tray

I3Module I3Module I3Module
I3Frame I3Frame

I3Context
● I3ServicePtr
● I3ServicePtr
● I3ServicePtr

I3Context - A dictionary of I3Services.
I3Service - "Global" object that’s
configurable at runtime in a python script.

When to use a proper I3Service stored in the I3Context?
● "Global" object used by several (lots) I3Modules

IceTray : RNG Service Example

I3Tray

I3Module I3Module I3Module
I3Frame I3Frame

I3Context[“I3RandomService”] = I3RandomServicePtr
● I3SPRNGRandomServicePtr
● I3GSLRandomServicesPtr
● I3MT19937ServicePtr
● I3MyFavoriteRandomServicePtr

User can choose any random service they want at runtime and
no downstream module needs to change.

IceTray : The Frame-Stream-Stop Model

I3Frame Types
I3Frame::TrayInfo
I3Frame::Geometry
I3Frame::Calibration
I3Frame::DetectorStatus
I3Frame::Physics
I3Frame::DAQ

I3Module ‘Stops’

I3Module::Geometry
I3Module::Calibration
I3Module::DetectorStatus
I3Module::Physics
I3Module::DAQ

Frames come in different flavors

Stops are methods that
correspond to a frame type.

IceTray : The Frame-Stream-Stop Model

IceTray

I3Module.
Physics(frame):
 # add code here that pulls
 # data from the frame, does
 #something interesting and
 # puts data back in the frame

I3Frame.Physics I3Module.
Physics(frame):
 # add code here that pulls
 # data from the frame, does
 #something interesting and
 # puts data back in the frame

When a Physics frame goes by the Physics methods
of all downstream modules get called and the frame
passed to it.

OutBox InBox

IceTray : The Frame-Stream-Stop Model

IceTray

I3Module.
Physics(frame):
 # add code here that pulls
 # data from the frame, does
 # something interesting and
 # puts data back in the frame

I3Frame.Physics I3Module.
Physics(frame):
 # add code here that pulls
 # data from the frame, does
 # something interesting and
 # puts data back in the frame

When a Physics frame goes by the Physics methods
of all downstream modules get called and the frame
passed to it.

OutBox InBox

Frame Hierarchy - Generally expected in this order: GCDQP
Frame Mixing - Example: All objects from G, C, D, Q are accessible from P-frames.
Frame Packets - QPPPPP P-frames following Q-frame "belong" to the Q-frame.
I3PacketModule - Allows you to process a vector of frames (i.e. "packet").

IceTray : Creating Typed Frames

IceTray : Tray Segments

TriggerSim Segment
IceCube triggering system applies four independent triggering algorithms.

It combines the results to generate a global trigger, removes launches outside the
readout window, and shifts the time of the objects to make them look like data.

You can re-trigger your data the "standard" way with two lines in your script:
 from icecube.trigger_sim import TriggerSim
 ...
 tray.Add(TriggerSim, gcd_file = dataio.I3File(<path_to_GCD>)

IceTray History Lesson

From 2008 - Present...

Why? Because lots of production scripts haven't
been updated in more than 10 years.

IceTray : Pre-2008

Very non-pythonic.
● Call ‘load’ explicitly.
● Odd AddModule signature.

*Still lots of production scripts and segments
that haven’t been cleaned up in over 10 years.

IceTray : Pre-2012

Very non-pythonic.
● Call ‘load’ explicitly.
● Odd AddModule signature.

Import IceCube projects the python way.

Pythonic signature with keyword arguments.

IceTray : Post-2013
Cleanups

● Just 'Add'
● Anonymous I3Modules - No need to include a name.
● No need to add “TrashCan” Module.
● Need to call “Finish” explicitly.

The Simplest IceTray Chain
I3InfiniteSource is a C++ module
located in the dataio project.

IceTray : Functions as IceTray Modules

IceTray : Lambda as ‘Modules’

Very simple filter.

If function returns True, the
frame is passed to the next
module.

Tray Segments

Group several ‘modules’
and functions together to
form something that can
plug in to IceTray.

I3Module : Post-Modern Classic - Pre-2017

I3Module : Post-Modern Classic - Post-2017

This is now the simplest IceTray module that works, but does absolutely nothing useful.

You don't have to implement a Configure method if it doesn't need one.

You don't have to explicitly add an OutBox anymore. The default works just fine for >99% of
modules in production.

I3Module :
Post-Modern Classic

Example of a fully-working
icetray chain that does
absolutely nothing.

The best we can say about
this is that it will execute
without throwing.

Simplest illustration of most
concepts up to this point.

I3Module: Parameters Parameters defined with 'AddParameter' become
keyword arguments when added to an I3Tray
instance.

 tray = I3Tray()
 tray.Add(ExampleModule, some_param = 32)

IceTray Services: Options

1) As a parameter.
2) From the context.

IceTray
Services

Two Options
1) Parameter
2) Context

No need for service
factories anymore

NOTE 1: You still might see "service
factories" in production scripts.

Old, complicated way to install a
service in a context.

IceTray
Services

Two Options
1) Parameter
2) Context

No need for service
factories anymore

NOTE 2: When writing post-modern
classic I3Modules, DO NOT forget to
"push the frame." Failure to push the
frame effectively filters it from the stream.

Services

Two Options
1) Parameter
2) Context

Generate 10 frames.

Tack on an I3Writer
to generate an I3File.

$ dataio-pyshovel bootcamp_example.i3.bz2

dataio-pyshovel Example

