Point Source Likelihood Technique "Finding needles in haystacks"

Josh Wood

Overview

Define the problem

Develop formalism

Python examples

What is a point source?

- Source = object emitting light, neutrinos, ponies... etc
- Point = emission comes from an object that appears smaller than the spatial resolution of your instrument

The Problem

Astronomy is easy when you don't have background

 For some messengers (high energy photons, neutrinos) we can't turn backgrounds off, but we still want to find sources. <u>How to find sources on top of background?</u>

What to do? Think about it!

Imagine you're an astronomer looking for a point source in the presence of uniform background.

<u>def</u>: **signal** is a particle that came from the source you're looking for

<u>def</u>: **background** is a particle that *did not* come from the source but looks identical to a particle emitted by the source

Ex. photon/neutrino with same energy as one from the source

<u>def</u>. **event** a detected particle. Can be photon, neutrino etc.

What to do? Think about it!

Imagine you're an astronomer looking for a point source in the presence of uniform background.

<u>def</u>: **signal** is a particle that came from the source you're looking for

<u>def</u>: **background** is a particle that *did not* come from the source but looks identical to a particle <u>emitted by the source</u>

Q: What's different about photons/neutrinos from the source vs the uniform background? (note: color doesn't count)

signal is clustered together in one spot!

Overview

Define the problem

Develop formalism

Python examples

Formalism Part I: Spatial Distributions

Let's start by adding some axes to our example

Formalism Part I: Spatial Distributions

Let's start by adding some axes to our example

Formalism Part I: Spatial Distributions

Let's start by adding some axes to our example

Formalism Part I: Spatial Distributions signal background of events of events const. # # position (x)position (x) of events needle in a haystack! data = signal + background # position (x)

11

Now that we know what signal & background distributions look like, we can formulate them in terms of **probabilities**

Now that we know what signal & background distributions look like, we can formulate them in terms of **probabilities**

def. **probability** is the chance of getting a given result out of the total number of outcomes.

--> ranges 0 to 1 (never to always)

---> sum of all outcomes must be 1

This way we can ask the question: *what is the probability* that our data are consistent with background + signal versus the case of background only?

--> quantify if a point source is present in data

Ok, let's turn our distributions of events into probability densities —> scale such that integral of distribution is 1

Ok, let's turn our distributions of events into probability densities —> scale such that integral of distribution is 1

Ok, let's turn our distributions of events into probability densities —> scale such that integral of distribution is 1

S(x) = probability density of finding signal at x
S(x) dx = probability of finding signal within dx of x

Ok, let's turn our distributions of events into probability densities —> scale such that integral of distribution is 1

Don't worry about exact form of S(x) today, we'll provide it. Form depends on detector, typically modeled as Gaussian

Ok, let's turn our distributions of events into probability densities —> scale such that integral of distribution is 1

Ok, let's turn our distributions of events into probability densities —> scale such that integral of distribution is 1

B(x) = probability density of finding background at x In astronomy, we typically work on surface of a sphere \rightarrow uniform **B(x)** = 1/4 π

The story so far:

→ **S(x)** = probability density of finding a signal event at x

Provided in example code: S(event, source)

B(x) = probability density of finding a background event at x

const = 1/4π

Both functions describe probability density for finding a *single event* at position **x**, for signal and background. What about a data set with *multiple events*?

For a dataset with:

- → N total events
- → **n**_s signal events

 $\rightarrow \mathbf{x}_i$ is the position where we detect the ith event (i \in [1, N])

total ith signal prob.

→ ns * S(xi) + N ↑ probability density of signal at xi

probability ith event is a signal event total ith background prob.

$$\downarrow (1 - \frac{n_s}{N}) * B(x_i)$$

probability density of background at **X**i

probability ith event is a background event

- For a dataset with:
- → N total events
- → **n**_s signal events
- $\rightarrow \mathbf{x}_i$ is the position where we detect the ith event (i \in [1, N])

total ith signal prob.

$$\prod_{i=1}^{N} \frac{n_s}{N} * S(x_i) + (1 - \frac{n_s}{N}) * B(x_i)$$

Total probability of ith event

How to combine probabilities of all events? Product!

For a dataset with:

- → N total events
- → **n**_s signal events
- $\rightarrow \mathbf{x}_i$ is the position where we detect the ith event (i \in [1, N])

$$\mathbf{L}(\mathbf{n}_{s}) = \prod_{i=1}^{N} \frac{\mathbf{n}_{s}}{\mathbf{N}} * \mathbf{S}(\mathbf{x}_{i}) + (\mathbf{1} - \frac{\mathbf{n}_{s}}{\mathbf{N}}) * \mathbf{B}(\mathbf{x}_{i})$$

L(n_s) is the total probability of the dataset containing n_s signal events. It is called a **likelihood function**.

The best estimate for the true value of **n**_s is the value which **maximizes the likelihood function**.

now for some math voodoo...

Formalism Part III: Voodoo

Working with **ratios of likelihoods** has some nice statistical properties.

Also, addition is easier and faster than multiplication so we define a **test statistic (TS)**:

$$TS = 2 \log(L(n_s) / L(n_s = 0))$$

$$TS = 2 \sum_{i=1}^{N} \log[\frac{n_s}{N} * \frac{S(x_i)}{B(x_i)} + (1 - \frac{n_s}{N})]$$

Finding the value of \mathbf{n}_s which maximizes TS is equivalent to maximizing the likelihood. TS = 0 means consistent with background only. TS ~ 25 typically proof of a point source.

Overview

Define the problem

Develop formalism

Python examples

https://icecube.wisc.edu/~jwood/bootcamp2018/