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“Finding needles in haystacks” 
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What is a point source?
• Source = object emitting light, neutrinos, ponies… etc 

• Point = emission comes from an object that appears 
smaller than the spatial resolution of your instrument

StarsThe Sun The Moon
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• Astronomy is easy when you don’t have background
The Problem

Clear Sky Background Light

• For some messengers (high energy photons, neutrinos) 
we can’t turn backgrounds off, but we still want to find 
sources. How to find sources on top of background? 4



What to do? Think about it!
Imagine you’re an astronomer looking for a point source  
in the presence of uniform background. 
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def: background is a particle that 
did not come from the source  
but looks identical to a particle 
emitted by the source

Ex. photon/neutrino with same 
energy as one from the source

def. event a detected particle. 
     Can be photon, neutrino etc. 
5



What to do? Think about it!
Imagine you’re an astronomer looking for a point source  
in the presence of uniform background. 
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def: background is a particle that 
did not come from the source  
but looks identical to a particle 
emitted by the source

Ex. photon/neutrino with same 
energy as one from the source

Q: What’s different about photons/neutrinos from  
     the source vs the uniform background?  
                 (note: color doesn’t count)

signal is clustered together in one spot!
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Formalism Part I: Spatial Distributions
Let’s start by adding some axes to our example
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Formalism Part I: Spatial Distributions
Let’s start by adding some axes to our example
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Formalism Part I: Spatial Distributions
Let’s start by adding some axes to our example
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Formalism Part I: Spatial Distributions
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needle in 
a haystack!
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Formalism Part II: Probabilities
Now that we know what signal & background 
distributions look like, we can formulate them  
in terms of probabilities
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Formalism Part II: Probabilities

def. probability is the chance of getting a given result  
       out of the total number of outcomes.

—> ranges 0 to 1 (never to always) 
—> sum of all outcomes must be 1

This way we can ask the question: what is the probability  
that our data are consistent with background + signal  
versus the case of background only?

—> quantify if a point source is present in data

Now that we know what signal & background 
distributions look like, we can formulate them  
in terms of probabilities
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Formalism Part II: Probabilities
Ok, let’s turn our distributions of events into 
probability densities —> scale such that  
integral of distribution is 1
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Formalism Part II: Probabilities
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Ok, let’s turn our distributions of events into 
probability densities —> scale such that  
integral of distribution is 1
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Formalism Part II: Probabilities
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S(x) = probability density of finding signal at x

S(x)

S(x) dx = probability of finding signal within dx of x

Ok, let’s turn our distributions of events into 
probability densities —> scale such that  
integral of distribution is 1
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Formalism Part II: Probabilities
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Don’t worry about exact form of S(x) today, we’ll provide it.
Form depends on detector, typically modeled as Gaussian

Ok, let’s turn our distributions of events into 
probability densities —> scale such that  
integral of distribution is 1
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Formalism Part II: Probabilities
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Ok, let’s turn our distributions of events into 
probability densities —> scale such that  
integral of distribution is 1
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Formalism Part II: Probabilities
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B(x) = probability density of finding background at x

B(x)

In astronomy, we typically  
work on surface of a sphere uniform B(x) = 1/4π

Ok, let’s turn our distributions of events into 
probability densities —> scale such that  
integral of distribution is 1
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Formalism Part II: Probabilities

B(x) = probability density of 
           finding a background event at x

S(x) = probability density of  
           finding a signal event at x

The story so far:

Provided in example code: S(event, source)

const = 1/4π

Both functions describe probability density for finding  
a single event at position x, for signal and background.
What about a data set with multiple events? 20



Formalism Part II: Probabilities
For a dataset with: 
      N total events 
      ns signal events 
      xi is the position where we detect the ith event (i ∈ [1, N])

S(xi) 

probability density 
of signal at xi

ns 
N * 

probability ith event 
is a signal event

total ith signal prob.

+

total ith background prob.

B(xi) 

probability density 
of background at xi

(1 - 
ns 
N * 

probability ith event 
is a background event

)
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Formalism Part II: Probabilities
For a dataset with: 
      N total events 
      ns signal events 
      xi is the position where we detect the ith event (i ∈ [1, N])

S(xi) 
ns 
N * 

total ith signal prob.

+

total ith background prob.

B(xi) (1 - 
ns 
N * )

Total probability of ith event

How to combine probabilities of all events? Product!

∏
i = 1

N
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Formalism Part II: Probabilities
For a dataset with: 
      N total events 
      ns signal events 
      xi is the position where we detect the ith event (i ∈ [1, N])

S(xi) 
ns 
N * 

+ B(xi) (1 - 
ns 
N * )∏

i = 1

N
L(ns) =

L(ns) is the total probability of the dataset containing 
ns signal events. It is called a likelihood function.
The best estimate for the true value of ns is the value 
which maximizes the likelihood function. 

now for some math voodoo…23



Formalism Part III: Voodoo
Working with ratios of likelihoods has some nice 
statistical properties.
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Also, addition is easier and faster than multiplication 
so we define a test statistic (TS):

TS = 2 log( L(ns) / L(ns = 0) )

TS = 2        log[ S(xi) ns 
N * B(xi) 

(1 - 
ns 
N 

) ]+∑
i = 1

N

Finding the value of ns which maximizes TS is equivalent  
to maximizing the likelihood. TS = 0 means consistent with  
background only. TS ~ 25 typically proof of a point source.
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https://icecube.wisc.edu/~jwood/bootcamp2018/ 

https://icecube.wisc.edu/~jwood/bootcamp2018/

