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What is a diffuse fit?
“Diffuse fit” is IceCube jargon for measuring the spectral properties of an isotropic 
astrophysical neutrino flux

“Isotropic” meaning that the neutrinos are equally likely to come from any direction

This scenario is not just a measurement we can make, but also corresponds to 
models where we cannot resolve individual sources of neutrinos



Statistics of a detector - Counting
Consider a detector that counts particles

Every time a particle hits the detector we receive a signal

If we leave the detector on for a long time, we will receive many signals which we 
can count

t



Statistics of a detector - Poisson

The number of particles we detect in a time t is a random variable

This is a poisson process, so the count is poisson distributed

The probability of getting k counts is 

Where  is the number of expected counts in time t

t



Statistics of a detector - Likelihood
If we know the true mean expected number of counts  then we can describe the 
probability of getting a certain outcome k when running the experiment

However we often do not know the truth  and only have the observation from our 
detector k

We can instead talk about the likelihood of truth  given observation k

Same formula, different 
concept



Statistics of a detector - Maximum likelihood
Defining the likelihood allows us to make an estimate of the parameter \lambda by 
finding the most likely value of \lambda, “Maximum Likelihood”

For the simple poisson case there is one easy solution



Statistics of a detector - A simple model
We can split our data into more than one bin

Consider 2 energy bins, we can count the data in each bin to get two 
measurements

Consider a flux model where the counts in bin 1 are 2x the counts in bin 2

We can construct a likelihood for this scenario that has a single parameter, in 
which the joint likelihood is a product of the likelihood for each bin

High 
energy

Low 
energy



Statistics of a detector - General models
This approach works in general for any number of model parameters and any 
number of bins

                likelihood of model parameters      given data



Diffuse fit - Observables
To measure the diffuse astrophysical neutrino flux and the atmospheric neutrino 
flux, we care about energy and zenith

In IceCube, energy is reconstructed from the light observed in the detector

Generally more light ⇒ more energy, but we have reasonably sophisticated 
reconstruction techniques

Direction can also be reconstructed from the light signature



Observables - Energy
Energy is important because we 
expect different spectra from the 
atmosphere and a diffuse 
astrophysical flux

Just one of many models 
for astrophysical neutrinos



Observables - Zenith
Zenith is important because the atmosphere and the earth affect what we observe

Different amounts of atmosphere, ice, rock to pass through at each angle

θz



Observables - Zenith
This effect is different for atmospheric and astrophysical neutrinos for 3 reasons

Location - atmospheric neutrinos are produced in the atmosphere

Spectrum - the spectrum is different for the two fluxes and the effect is energy 
dependent

Accompanying muons - atmospheric neutrinos that do not pass through the earth 
often have a sister muon that also hits the detector, while neutrinos from the other 
side of the earth have their sister muons blocked



Neutrino Interactions
Detectable through the weak interaction

Small cross section → challenging to detect

O(100TeV) neutrinos have an interaction length O(Rearth)
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Observables - Topology
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Observables - Topology
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Momentum transfer to quark creates hadronic 
shower
Charged particles look like an EM cascade

W decays to quark/anti-quark pair (67.6% BR)
Results in a hadronic shower
Other decay channels are neutrino-lepton 
pairs (10.8% BR per flavor)
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Event Detection And Topology
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Constructing the binning
So because both energy and zenith are important, we bin our data in 
reconstructed zenith and reconstructed energy to obtain a grid

How do we determine the expectation for each bin based on our model 
parameters?

The answer is simulation! (also called Monte Carlo)



Monte Carlo
We can simulate astrophysical neutrinos or atmospheric events to see what the 
detector response is.



Monte Carlo
The simulation can be binned just like our data to get an expectation of our 
detector response

Cascades

Tracks

Atmospheric Astrophysical Sum



Monte Carlo - Weighting
So that covers one hypothesis (or set of values for \theta)

What if we want to test another hypothesis?

We don’t want to rerun the simulation because that’s expensive…

So we reweight the simulation!



Weighting
Consider model A where we expect one event with some range of properties, after 
considering detector effects

We know that the flux of events like that in model B, is half that in model A

That means if we want to test model B, when we make our histogram, we should 
use an event weight of 1/2



Weighting
Effectively for each event

The weight is the model flux divided by the flux used to generate the event

It is important to note that the fluxes we are referring to here are the neutrino flux 
before any detector or earth effects, the inputs to the simulation, so we use the 
true neutrino energy and zenith



Recall
We have a likelihood that is a product of poisson terms

Where each i is the expectation in a bin, which is a function of the nuisance 
parameters

If we consider that our expectation comes from simulation then we know

Which we maximize to obtain an estimate for 



To the code!
Load the MC into events

Load the data

Define event weighting

Define bins

Define likelihood function

Minimize -logL w.r.t. parameters

DONE!



Code - Imports



Code - Load MC



Code - Load Data



Code - Event weighting



Code - Binning



Code - Bin masks



Code - Bin masks



Code - Expectation



Code - Likelihood



Code - Binned data



Code - Minimize


