Detection uncertainties at low energies

J.P. Yanez on behalf of LowEn/Oscillations j.p.yanez@ualberta.ca February 14th, 2017 With some additions from Summer...

Diffuse low energy analyses

- Count neutrinos from multiple directions & energies
- Usual goal is to characterize a spectrum
- Typical strategy is forward fold
 - Produce simulation
 - Process simulation and data equally
 - Bin data & MC using observables, compare
- Uncertainties included in MC adjustment to data
 - Fit of physics parameters **with** nuisance parameters
- Relying heavily on MC to interpret results
 - No off-source region, test beam, near detector ...
 - Believe in a result only if data and MC agree well

Diffuse low energy analyses

Systematic uncertainties

- Systematics are **reweighting factors** of the simulation
 - In the likelihood, λ depends on w

$$\mathcal{L}(\lambda, x, w; \mu, \sigma) = \prod_{i=1}^{n} \frac{\lambda_i^{x_i} e^{-\lambda_i}}{x_i} \prod_{j=1}^{m} \frac{1}{\sqrt{2\pi\sigma_j^2}} e^{-\frac{(w_j - \mu_j)^2}{2\sigma_j^2}}.$$

- We have to model and **parameterize** their impact
 - Allowed to transition smoothly between possibilities
 - Detection parameters = resimulation

- Optical efficiency
- Bulk ice properties
- Hole ice properties

- → DOM-wise variations not considered
- → Implemented at the <u>sample-level</u>

- Optical efficiency
- Bulk ice properties
- Hole ice properties

- → Single global systematic shift, conceptually simple
- → DOM-wise variations not considered
- → Implemented at the <u>sample-level</u>

- Optical efficiency
- Bulk ice properties
- Hole ice properties

- → Simulated as an <u>effective</u> modulation of the angular acceptance
- → Implemented in analysis following the <u>same scheme</u>
- → Two models:
 - From laser data ("H2"): uniform scattering in all of the hole
 - From **flasher** data ("Dima"): unfolded with bulk ice
 - Nested model changes head-on acceptance ("MSU")

- Optical efficiency
- Bulk ice properties
- Hole ice properties

- → Simulated as an <u>effective</u> modulation of the angular acceptance
- → Implemented in analysis following the <u>same scheme</u>
- → Two models:
 - From laser data ("H2"): uniform scattering in all of the hole
 - From **flasher** data ("Dima"): unfolded with bulk ice
 - Nested model changes head-on acceptance ("MSU")

- The flasher+fwd model
 - is needed for low-en data/MC agreement
 - reproduces <u>direct hole ice simulation</u> reasonably well

- Optical efficiency
- Bulk ice properties
- Hole ice properties

- → The ice model is a function of many (order 100) parameters
 - Not possible to include in current scheme
- → Reasonable ice model variants not available
 - "Error ellipse" models are too different
 - Ice model sampling by Jakob could work, so far not used
 - Efforts at Texas Arlington try to tackle this issue
- → Previous strategies (using WHAM, Mie & Lea)
 - Estimate potential biases by
 - MC tests, fitting one with the other
 - If bias is small, ignore
 - Fitting the data with all models
 - \circ marginalize the LLH (tested, not used), or
 - pick the one with the largest error (used in PRD)
 - No "best-fit" for ice model. Results produced with a single model.

- Optical efficiency
- Bulk ice properties
- Hole ice properties

- → The ice model is a function of many (order 100) parameters
 - Not possible to include in current scheme
- → Reasonable ice model variants not available
 - "Error ellipse" models are too different
 - Ice model sampling by Jakob could work, so far not used
 - Efforts at Texas Arlington try to tackle this issue
- → Current strategy
 - Ignore for most
 - EXCEPT GRECO sample (very high stats)
 - Ice model discrepancies show up in variables connected to depth
 - LEESARD: First HLC position
 - Most other selection variables show very good agreement

- Optical efficiency
- Bulk ice properties
- Hole ice properties

Numu CC, GRECO, +10% absorption

- → The ice model is a function of many (order 100) parameters
 - Not possible to include in current scheme
- → Reasonable ice model variants not available
 - "Error ellipse" models are too different
 - Ice model sampling by Jakob could work, so far not used
 - Efforts at Texas Arlington try to tackle this issue
- → Current strategy
 - Ignore for most
 - EXCEPT GRECO sample (very high stats)
 - Ice model discrepancies show up in variables connected to depth
 - LEESARD: First HLC position
 - $\circ \qquad \text{Most other selection variables show very good } agreement \\$

- Optical efficiency
- Bulk ice properties
- Hole ice properties

- → The ice model is a function of many (order 100) parameters
 - Not possible to include in current scheme
- → Reasonable ice model variants not available
 - "Error ellipse" models are too different
 - Ice model sampling by Jakob could work, so far not used
 - Efforts at Texas Arlington try to tackle this issue
 - Current strategy
 - Ignore

- Ice model discrepancies show up in variables connected to depth
 - **DRAGON**: cog q1 z
 - Chi squared 106 / 30 bins (p-value < 10^(-5))
 - Mixed agreement in other variables

....

- Precision gain by removing a systematic uncertainty at a time LEESARD
 - Low statistics, nice events, straight cuts, little ice model dependence

	wixing angle			mass splitting		
	Parameter	H2	Dima+MSU	Parameter	H2	Dima+MSU
LEESARD (3 years), H2 model	DOM eff	3.3%	4.2%	DOM eff	14.9%	6.9%
LEESARD (3 years), Dima+MSU model	Hole ice	2.9%	0.4%	Hole ice	5.1%	2.8%
68% (dashed) and 90% (solid) C.L.	HI fwd	-	0.4%	HI forward	-	6.9%
2.	Up/hor ratio	0.42%	1.0%	Up/hor ratio	3.5%	6.8%
.0	Atm. muons	0.27%	0.1%	gamma	2.4%	3.1%
	gamma	0.16%	0.03%	MA (res)	1.8%	1.1%
((* ×)))	Norm NC	0.08%	0.3%	Norm NC	0.47%	0.023%
	Nu/nubar	0.04%	0.04%	MA (QE)	0.31%	0.28%
0.3 0.4 0.5 0.6 0.7	MA (QE)	0.007%	0.03%	Norm nue	0.24%	~0%
$\sin^2 heta_{23}$	MA (res)	0.004%	0.01%	Atm. muons	0.23%	1.5%
	Norm nue	<0.001%	<0.002%	Nu/nubar	0.22%	0.09%

Before "spiciness"...

After "spiciness"...

> Off maximal pull is about about 0.9 in 2 Delta LLH

Less then 1 sigma

- Precision improvement with statistics LEESARD
 - Low statistics, nice events, straight cuts, little ice model dependence

- Sensitivity lost for not knowing a systematic uncertainty at a time- **DRAGON**
 - Medium statistics, all events, nested BDTs, reconstructing using tables

• Conclusion differs from LEESARD case

- DOM efficiency takes most of the toll here
- Hole ice has very small impact, but ...
- Data/MC agreement
 - With H2: p-value < 0.01
 - With Flasher+Fwd: p-value ~0.65

	Reduction o	f sensitivity from
Systematic Removed	Δm_{32}^2 (%)	$sin^{2}(heta_{23})$ (%)
DOM _{eff}	20.27	0.32
$\nu/\bar{\nu}$ ratio	3.03	0.22
HI forward	2.22	0.55
M_A^{RES}	1.23	0.03
Atmospheric μ fraction	0.82	0.65
Up/Horizontal ratio	0.61	1.93
norm _e	0.32	0.015
θ_{13}	0.32	0.0040
γ	0.091	0.24
norm _{NC}	0.060	0.10
Hole ice	0.046	0.80
M _A ^{QE}	0.0043	0.0053

- Sensitivity lost for not knowing a systematic uncertainty at a time **DRAGON**
 - Medium statistics, all events, nested BDTs, reconstructing using tables
- Conclusion differs from LEESARD case
 - DOM efficiency takes most of the toll here
 - Hole ice has very small impact, but ...
- Data/MC agreement
 - With H2: p-value < 0.01
 - With Flasher+Fwd: p-value ~0.65
- Head-on illumination region matters

- Sensitivity lost for not knowing a systematic uncertainty at a time **DRAGON**
 - Medium statistics, all events, nested BDTs, reconstructing using tables

Tab 6.2.A Change in 1 σ width for each systematic (in %) for v_{τ} CC measurement.

Systematic Removed	$\Delta v_{\tau} \textbf{C} \textbf{C}$	
Barr flux parameter up:horizontal ratio	15.1	
Forward hole ice parameterization	<mark>8.</mark> 2	
Δm ² ₃₁	4.7	
Scattering in the hole ice	4.2	
Atmoshperic μ normalization	4.1	

Summary

- Detection uncertainties (detector + medium) dominate error budget in diffuse low energy studies
- LowEn studies pushing the systematic barrier
 - $\circ \quad \ \ {\rm To} \ obtain \ acceptable \ goodness \ of \ fit$
 - $\circ \quad \ \ {\rm To \, keep \, on \, improving \, our \, measurements}$
- Lots of work going towards DOM eff & hole ice
 - We might be sensitive enough to resolve/reject SPICE HD models
- Don't know when will the bulk ice kick
 - Disagreement is visible, but can still achieve decent GoF
 - \circ ~ Is the result biased? How much? How to test it?
- DOM-wise efficiency not considered thus far

Backup

