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Diffuse low energy analyses

● Count neutrinos from multiple directions & energies
● Usual goal is to characterize a spectrum
● Typical strategy is forward fold

○ Produce simulation

○ Process simulation and data equally

○ Bin data & MC using observables, compare

● Uncertainties included in MC adjustment to data
○ Fit of physics parameters with nuisance parameters

● Relying heavily on MC to interpret results
○ No off-source region, test beam, near detector ...

○ Believe in a result only if data and MC agree well

Detection & 
selection
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Diffuse low energy analyses

Detection & 
selection
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● Systematics are reweighting factors of the simulation
○ In the likelihood, λ depends on w

● We have to model and parameterize their impact
○ Allowed to transition smoothly between possibilities

○ Detection parameters = resimulation

Systematic uncertainties

Parameter of interest
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Detection uncertainties (i)

● Optical efficiency
● Bulk ice properties
● Hole ice properties

➔ Single global systematic shift, conceptually simple
➔ DOM-wise variations not considered

➔ Implemented at the sample-level

MC prediction for set of parameters Bin-wise impact of modifying optical efficiency Optical efficiency change
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Detection uncertainties (i)

● Optical efficiency
● Bulk ice properties
● Hole ice properties

➔ Single global systematic shift, conceptually simple
➔ DOM-wise variations not considered

➔ Implemented at the sample-level

MC prediction for set of parameters Bin-wise impact of modifying optical efficiency

Linear component of the fit per bin
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Detection uncertainties (ii)

● Optical efficiency
● Bulk ice properties
● Hole ice properties

➔ Simulated as an effective modulation of the angular acceptance
➔ Implemented in analysis following the same scheme

➔ Two models:
◆ From laser data (“H2”): uniform scattering in all of the hole
◆ From flasher data (“Dima”): unfolded with bulk ice

● Nested model changes head-on acceptance (“MSU”)

Linear component in flasher fit Linear component in head-on illumination fit
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Detection uncertainties (ii)

● Optical efficiency
● Bulk ice properties
● Hole ice properties

➔ Simulated as an effective modulation of the angular acceptance
➔ Implemented in analysis following the same scheme

➔ Two models:
◆ From laser data (“H2”): uniform scattering in all of the hole
◆ From flasher data (“Dima”): unfolded with bulk ice

● Nested model changes head-on acceptance (“MSU”)

◆ The flasher+fwd model 
● is needed for low-en data/MC agreement
● reproduces direct hole ice simulation reasonably well
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Detection uncertainties (iii)

● Optical efficiency
● Bulk ice properties
● Hole ice properties

➔ The ice model is a function of many (order 100) parameters
◆ Not possible to include in current scheme

➔ Reasonable ice model variants not available
◆ “Error ellipse” models are too different
◆ Ice model sampling by Jakob could work, so far not used
◆ Efforts at Texas Arlington try to tackle this issue

➔ Previous strategies (using WHAM, Mie & Lea)
◆ Estimate potential biases by

● MC tests, fitting one with the other

○ If bias is small, ignore
● Fitting the data with all models

○ marginalize the LLH (tested, not used), or
○ pick the one with the largest error (used in PRD)

◆ No “best-fit” for ice model. Results produced with a single model.

1-year LEESARD sensitivity (not-published)
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Detection uncertainties (iii)

● Optical efficiency
● Bulk ice properties
● Hole ice properties

➔ The ice model is a function of many (order 100) parameters
◆ Not possible to include in current scheme

➔ Reasonable ice model variants not available
◆ “Error ellipse” models are too different
◆ Ice model sampling by Jakob could work, so far not used
◆ Efforts at Texas Arlington try to tackle this issue

➔ Current strategy
◆ Ignore for most
◆ EXCEPT GRECO sample (very high stats)

● Ice model discrepancies show up in variables connected to depth
○ LEESARD: First HLC position
○ Most other selection variables show very good agreement
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Detection uncertainties (iii)

● Optical efficiency
● Bulk ice properties
● Hole ice properties

➔ The ice model is a function of many (order 100) parameters
◆ Not possible to include in current scheme

➔ Reasonable ice model variants not available
◆ “Error ellipse” models are too different
◆ Ice model sampling by Jakob could work, so far not used
◆ Efforts at Texas Arlington try to tackle this issue
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◆ EXCEPT GRECO sample (very high stats)

● Ice model discrepancies show up in variables connected to depth
○ LEESARD: First HLC position
○ Most other selection variables show very good agreement
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Detection uncertainties (iii)

● Optical efficiency
● Bulk ice properties
● Hole ice properties

➔ The ice model is a function of many (order 100) parameters
◆ Not possible to include in current scheme

➔ Reasonable ice model variants not available
◆ “Error ellipse” models are too different
◆ Ice model sampling by Jakob could work, so far not used
◆ Efforts at Texas Arlington try to tackle this issue

➔ Current strategy
◆ Ignore

● Ice model discrepancies show up in variables connected to depth
○ DRAGON: cog q1 z
○ Chi squared 106 / 30 bins (p-value < 10^(-5))
○ Mixed agreement in other variables 
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Why do we care? In oscillations ...
● Precision gain by removing a systematic uncertainty at a time - LEESARD

○ Low statistics, nice events, straight cuts, little ice model dependence

Mixing angle Mass splitting
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Why do we care? In oscillations ...

14

Before “spiciness”... After “spiciness”...



Why do we care? In oscillations ...
● Precision improvement with statistics - LEESARD

○ Low statistics, nice events, straight cuts, little ice model dependence
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Why do we care? In oscillations ...
● Sensitivity lost for not knowing a systematic uncertainty at a time- DRAGON

○ Medium statistics, all events, nested BDTs, reconstructing using tables

● Conclusion differs from LEESARD case
○ DOM efficiency takes most of the toll here

○ Hole ice has very small impact, but … 

● Data/MC agreement
○ With H2: p-value < 0.01

○ With Flasher+Fwd: p-value ~0.65
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Why do we care? In oscillations ...
● Sensitivity lost for not knowing a systematic uncertainty at a time - DRAGON

○ Medium statistics, all events, nested BDTs, reconstructing using tables

● Conclusion differs from LEESARD case
○ DOM efficiency takes most of the toll here

○ Hole ice has very small impact, but … 

● Data/MC agreement
○ With H2: p-value < 0.01

○ With Flasher+Fwd: p-value ~0.65

● Head-on illumination region matters
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Why do we care? In oscillations ...
● Sensitivity lost for not knowing a systematic uncertainty at a time - DRAGON

○ Medium statistics, all events, nested BDTs, reconstructing using tables
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Summary
● Detection uncertainties (detector + medium) dominate 

error budget in diffuse low energy studies
● LowEn studies pushing the systematic barrier

○ To obtain acceptable goodness of fit

○ To keep on improving our measurements

● Lots of work going towards DOM eff & hole ice
○ We might be sensitive enough to resolve/reject SPICE HD models

● Don’t know when will the bulk ice kick
○ Disagreement is visible, but can still achieve decent GoF

○ Is the result biased? How much? How to test it?

● DOM-wise efficiency not considered thus far
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Backup
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From M. Rongen
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