Examining Ice Anisotropy with Downgoing Muons

William Luszczak Calibration Workshop 8/1/17

Introduction

- Muons are bright and numerous, making them attractive candidates as light sources for studying the detector ice
- Previous study done by Kyle Jero showed evidence of anisotropy when comparing simulation with no anisotropy (SpiceMie) to experimental data
- This method has since been used on SpiceLea, and is currently being used on Spice3.2
 - Allows a comparison between SpiceLea (with an anisotropy value of 8%) and Spice3.2 (with an anisotropy value of 10.6%).
- Mostly useful for verification or comparison between two ice models/anisotropy values. A scan over anisotropy values would be computationally infeasible

Source: Evidence of optical anisotropy of the South Pole ice:

http://www.cbpf.br/~icrc2013/papers/icrc2013-0580.pdf

Review of SpiceLea Study

- Use Spice-Lea simulation sets
 - 11808 and 11937 used for SpiceLea study
 - Combined energy range of 600 GeV-1e11 GeV
- Compare with data: 2012 IC86 level2 data with deep-core removed
- Examine anisotropy in 50m distance bins (can also do depth bins instead/in addition)
- Use SRTInIcePulses. Select muon tracks with:
 - Passed MuonFilter_12
 - Zenith < 30 degrees
 - Within 300m of the center of the detector at both top and bottom of track
- Make plot of $Q(\phi)/Q_{avg}$ for both experiment and simulation, where:
 - $Q(\phi)$ is the average charge seen by a DOM for a track with position of closest approach at angle ϕ
 - Q_{avg} is the charge seen by DOMs, averaged across all azimuthal angular bins
 - Charges and angles are measured for *every* DOM, so each track gives 4680 datapoints (78 strings*60 DOMs per string)

Example tracks. The green track passes the cut, the red tracks do not.

300 m

*Can find more details and results of this study on the wiki page: https://wiki.icecube.wisc.edu/index. php/Ice_Anisotropy_With_Muons

Spice3.2

- Spice3.2 analysis previously put on hold due to lack of full detector Spice3.2 simulation
- Simulation now available (12359), courtesy of Sebastian Sanchez
- Do similar event selection as the SpiceLea study:
 - Passed MuonFilter_12 Passed FilterMinBias_13
 - Easier to get better statistics with MinBias (~factor of 10 improvement). Data seems otherwise unaffected
 - Zenith < 30 degrees
 - Within 300m of the center of the detector at both top and bottom of track
 - Q_{tot} > 16 pe and Q_{tot} < 50 pe

	Spice- Lea	Spice3.2
Direction of major anisotropy axis	126°	130°
Major anisotropy coefficient k ₁	-0.08	-0.106
Minor anisotropy coefficient k ₂	0.04	0.053

(+some other small differences)

Spice3.2: Q_{tot} Cut

- With no cuts on Q_{tot}, see mismatch between experiment and simulation for amount of charge seen by individual DOMs
- Spice3.2 simulation only covers energy range 600GeV < Eprim < 1e5GeV
 - No current plans for a higher energy extension (1e5 GeV-1e11 GeV)
- Solution: Make cut on Q_{tot} to attempt to filter out the extra high energy events in the experimental data
 - Use full energy range Spice-Lea (11808+11937) simulation to determine where to place the cut
 - It looks like the optimal cut is $Q_{\text{tot}}\!>\!16$ pe and $Q_{\text{tot}}\!<50$ pe

Spice3.2: Results

 \rightarrow How can we describe how well each model describes the anisotropy?

Quantifying Anisotropy in Spice3.2

- How can we quantify how well these different ice models describe the anisotropy specifically?
 - Standard deviation (previous plots) is insufficient
- Ideally, the method we choose should be able to able to pick out the anisotropy from other possible existing effects
 - Especially important when comparing models with differences other than just anisotropy values.
- Try a fourier analysis based approach
 - We know the anisotropy has a frequency of ω =2, use fourier analysis to pick out this frequency from the others
 - Use the magnitude of the ω =2 fourier coefficient to quantify the performance of a particular ice model (with respect to anisotropy)
 - Other frequencies may correspond to other effects (ω =6?)
 - Can also do fits, either of sine waves or higher order fits by including more terms in the inverse transform

Quantifying Anisotropy: A Fourier Approach

 Take discrete fourier transform (DFT) of the exp/sim plots, as defined by numpyp.fft.fft() with N=60:

$$A_{\omega} = \sum_{\theta_n} y(\theta_n) \exp(-i\omega\theta_n)$$
$$\theta_n = \frac{2\pi n}{N} \qquad n = 0, 1, 2, \dots, N$$
$$\omega = -\frac{N}{2}, -\frac{N}{2} + 1, \dots, \frac{N}{2}$$

• With the inverse transform:

$$y(\theta_n) = \frac{1}{N} \sum_{\omega} A_{\omega} \exp(i\omega\theta_n)$$

Quantifying Anisotropy: A Fourier Approach

- Can use this method to pick out the frequency associated with the anisotropy: ω=2
 - The smaller A₂ is, the better the ice model matches the actual anisotropy value*
- Other effects present as well:
 - ω =6 geometric/selection effect
 - Even higher frequency effects at ω =15, 24

*Assuming that the anisotropy is the only ω =2 effect

Quantifying Anisotropy: A Fourier Approach (All Distance Bins)

- In general, the ω =2 mode is smaller when using Spice3.2
 - Different for 150m < d < 200m, but statistics are worse in this distance bin
- The ω =6 mode becomes much more significant at distances greater than 100m
 - Higher frequency ω =15, 24 modes seem related to the ω =6 mode

Quantifying Anisotropy: A Fourier Approach

- This method allows us to fit cosine waves for the anisotropy
 - 2 degrees of freedom: amplitude and phase

$$y = C\cos(\omega\theta + \phi)$$

Where:

$$C = \sqrt{a^2 + b^2} \qquad \tan \phi = \frac{b}{a}$$
$$A_{\omega} = a + bi$$

7

 Can also include higher frequency modes by doing a partial inverse transform:

$$y(\theta_n) = \frac{1}{N} \sum_{\omega=2,6} A_{\omega} \exp(i\omega\theta_n)$$

11

Quantifying Anisotropy: A Fourier Approach

- In general C₂ is smaller for Spice3.2 than for SpiceLea, except in the 150m to 200m distance bin
 - Expected from power spectrum plots
 - Anisotropy value might be closer to the 10.6% value than the 8% value*
- The fits are ~180 degrees out of phase
 - Suggests that Spice3.2 is overmodeling the anisotropy, while SpiceLea is undermodeling the anisotropy

*Assuming that the anisotropy is the only $\omega {=} 2$ effect

Depth Bins

- Try binning in depth instead of distance
 - 1 distance bin: 0-100m
 - 5 depth bins (200m each)
- Look for change in C₂ in bottom depth bin
 - No evidence for depth dependence, but depth dependence is a small effect
 - Spice3.2 and SpiceLea are in phase when binned in depth (probably because only considered 0-100m)

Summary/Status

- Downgoing muons used to examine anisotropy values in SpiceLea and Spice3.2 simulation
 - A fourier analysis reveals that the ω =2 mode is smaller in the power spectrum for Spice3.2.
 - Fits of the ω =2 mode are 180 degrees out of phase for the two ice models
 - If the ω =2 mode is solely due to anisotropy, this suggests that the anisotropy value is between 8% and 10.6%
 - A higher frequency ω =6 mode is apparent at distances greater that 100m, but still only partially understood
 - Currently no evidence for depth dependent anisotropy in this analysis, though it is uncertain whether such an effect would be visible here
- To do:
 - Repeat analysis using horizontal/diagonal muons (such that cherenkov light front hits the DOM at a zenith angle of 90 degrees or more)
 - Do similar analysis with timing information instead of charge information (make plots of $t_{res}(\Phi)/t_{res avg}$)
 - Examine ω =6 geometric effect. Why does this affect plots of Q(Φ)/Q_{avg}?
 - Check depth dependence better: finer depth bins? Why are Spice3.2 and SpiceLea in phase when binned in depth, but not when binned in distance? Try larger distance/multiple distance bins with depth bins.
 - Expand distances considered beyond 200m (is this feasible?)
 - Check SpiceMie for ω =2 mode, try finding a way to convert C₂ to an anisotropy value

Backup slides

Spice3.2: Q_{tot} Cut

Spice3.2: Q_{tot} Cut

- Pick out region that is roughly similar for both full energy range simulation (11808+11937) and reduced energy range simulation (12359)
 - Apply Q_{tot} cut to both experiment and simulation
- Cuts are then:
 - Passed FilterMinBias_13
 - Zenith < 30 degrees
 - Within 300m of the center of the detector at both top and bottom of track
 - Q_{tot} > 16 pe and Q_{tot} < 50 pe

Geometric/Charge Dependent Selection Effects?

- Azimuthal angle histogram shows 6-fold symmetry (some kind of detector effect) in both experiment and simulation
- DFT shows this effect is mostly composed of the ω =6 mode, relatively little ω =2

Geometric/Charge Dependent Selection Effects?

 Geometric effect definitely present and able to be modeled simply, but somehow coupling to a charge

Geometric/Charge Dependent Selection Effects?

Shape of Q/Q_{avg} plots changes with new cuts, but change is reflected in both simulation and experimental data

 Azimuthal angle variations must relate to Q in some manner, could explain ω=6 mode in ratio plots

Partial inverse transform fits

- Can use the fourier decomposition to fit the ω =6 mode as well
 - Gives better fits, but also adds some more parameters

Depth bin problems fixed

- Previous problem getting charge/DOM histograms to match
 - Problem was lower Qtot cut not being applied correctly in depth bins
- Problem now fixed, charge/DOM histograms match for all 3 datasets in all depth bins

Depth Bin Non-Ratio Plots

Transform of Q/Qavg for Exp Data

- Clear ω=2 mode, even in nonratio plots
 - Is this variation still present for SpiceMie?
 - If not, can maybe claim these variations are due to anisotropy alone
- Is there a way to convert C₂'s back into anisotropy values?

Results for simulation (SPICE MIE - no propagation anisotropy)

Observations:

- No large scale oscillation structure with period π
- Smaller scale structure for different distances
 - Likely due to geometry effects