Improving cascade resolution studies

Tianlu Yuan
Calibration workshop
August 4, 2017

Motivation

- Waveform disagreements between MC and data hinted that there is room to improve reconstruction
- Furthermore, bright-DOM exclusions in HESE mean current resolutions do not take all data into account
- Try to quantitatively evaluate the effect of the ice-model and brightDOM exclusions on reconstructed resolutions
- Check what limits are possible for ideal reconstruction

Waveforms and cascade orientation

Reconstruction relies on waveform amplitude and timing

Noticeable differences between bestfit and reversed-orientation directions

Some disagreement between best-fit and data remain and hint that there is room to improve reconstruction

Two approaches to improved resolutions

1. Include more data

Bert waveforms on closest string

A few examples of unused waveforms

$\mu \mathrm{s}$

Bright DOMs are ignored completely in reconstruction
2. Improve ice model, reduce ice uncertainties
D. Chirkin

Currently an
effective ice-model error of 10\%

Bright DOMs in high energy events

HESE 6 year

Define $\mathrm{Q}_{\text {avg }}$ as the mean total charge of all hit DOMs

DOMs with $\mathrm{Q}_{\text {bright }}>\alpha \mathrm{Q}_{\text {avg }}$ are classified as "Bright".

- Default $\alpha=10$

PMT is not necessarily saturated, but excluded because systematic uncertainties start to dominate over statistical errors in fitting the waveforms

Bright but not saturated

Saturated DOMs are typically a subset of bright DOMs.

Distance to vertex

Strong dependence on distance from the vertex

Typically are set of DOMs closest to vertex

Mostly within single string spacing (125m)

Should help with directional reconstruction!

Rowlf: A particularly bad case

With Brights

Monopod likelihood map destabilizes with inclusion of bright DOMs

Two approaches to improved resolutions

1. Include more data

Bert waveforms on closest string

A few examples of unused waveforms

Bright DOMs are
ignored completely
in reconstruction
2. Improve ice model, reduce ice uncertainties
D. Chirkin

Currently an effective ice-model error of 10%

DirectFit

- DirectFit LLH includes an effective ice-model uncertainty that smears the charge on each DOM $+/-10 \%$ (default)
- This ensures that the fit isn't too biased by high statistic DOMs

$$
-\ln \mathcal{L}=\sum_{i}\left[s_{i} \ln \frac{s_{i} / n_{s}}{\mu_{s}^{i}}+d_{i} \ln \frac{d_{i} / n_{d}}{\mu_{d}^{i}}+\frac{1}{2 \sigma^{2}} \ln ^{2} \frac{\mu_{d}^{i}}{\mu_{s}}\right] .
$$

"Likelihood description for comparing data with simulation of limited statistics", D. Chirkin, arXiv:1304.0735

DirectFit

Capable of reconstructing data with direct photon simulation with ppc
Likelihood function different from the mainstream recos as the expectations from simulation is no longer analytic (e.g. Millipede)

Fit routine proceeds through several iterations of a localized random search where many position and direction are tested and the best fit energies at those steps are calculated.

Following fit, approximate Bayesian calculation (ABC) method applied based on fit results to estimate posterior via MCMC.

Ref. arXiv:1309.7010

Procedure

1. Simulate a EM cascade with ppc at

- $r=(0,0,300) m \rightarrow 1648 m$ depth
- $\theta=(90$ zenith, 0 azimuth $)$
- Ice-sim=3.2
- $E=1 E[3,4, \ldots 7] \mathrm{GeV}$

2. For each simulated cascade, use DirectFit to try and reconstruct the best fit point assuming

- Ice-rec=(spice-Mie, 3.2)
- $\sigma=(0.0,0.05,0.1)$ ice model uncertainty
- $Q_{\max }=(300,500,1000,3000,5000,10000)$ p.e. cut off such that $D O M s$ with $Q_{D O M}>Q_{\max }$ are excluded

3. Once best fit is found, sample from the approximate posterior distribution $P(r, \theta \mid D)$ for each combination of ice models, energies, and sigmas

- Std deviation of this sample gives resolution: $\delta r, \delta \theta, \delta E$
- And pulls: $\frac{E-E_{\text {true }}}{\delta E}$ etc.

An example: step 1, simulation

1. $\mathrm{E}=100 \mathrm{TeV}$, ice=spice-3.2 (latest), $\mathrm{r}=(0,0,300), \theta=(90 z, 0 a)$

36, 14

IceCube-86 (78+8) interstring (surface) distances

An example: step 2, reconstruction

1. $E=100 \mathrm{TeV}$, ice=spice- 3.2 (latest), $r=(0,0,300), \theta=(90 z, 0 a), \sigma=0.0$
2. DirectFit steps to the minimum

An example: step 3, error calculation

1. $\mathrm{E}=100 \mathrm{TeV}$, ice=spice- 3.2 (latest), $r=(0,0,300), \theta=(90 z, 0 a), \sigma=0.0$
2. DirectFit steps to the minimum
3. Generate probabilities across the parameter space

Effect of $\mathrm{Q}_{\max }$ on angular resolution

Reconstruct simulated 500 TeV and 1 PeV cascade for a set of $\mathrm{Q}_{\text {max }}$

Tested with an identical sim-reco ice-model and a different ice-model (SPICE-mie)

Angular pull vs energy and σ

Energy pull vs energy and σ

Angular resolution vs energy and σ

Combined effect on angular resolution

3.2+: Includes cable, DOM orientation

With more simulated photons

Improved energy reconstruction too!

Performed on new noncontained PeV cascade "Hydrangea"!

$$
\frac{\delta_{E}}{E}: 8.3 \% \rightarrow 3.6 \%
$$

Summary

Room to improve cascade reconstruction

Currently affected by

1. Bright DOM exclusions
2. Ice-model and ice-model uncertainty

Even more improvement with increased direct photon statistics but this may prove to be impractical.

Backups

 4

Bert

http://icecube.wisc.edu/~tyuan/share/fig/waveform/hese_exclusions/mjd55782.52/str53.png

