

Introduction to Physics Analyses in IceCube

IceCube BootCamp 2017 WIPAC, UW-Madison June 8, 2017

Donglian Xu

Outline

- Event Selection/Cuts
- Ongoing Physics Analyses
 - Diffuse/Atmospheric Neutrinos
 - Cosmogenic neutrinos (EHE)
 - All flavor (cascades and tracks)
 - Through-going NuMu (tracks)
 - NuTau (double cascades)
 - Flavor ratios
 - Point sources/Transient
 - Low-energy and Oscillations
 - Supernova
 - Cosmic Rays (IceTop: Energy spectrum, anisotropy)
 - Beyond the Standard Model (BSM)

Event Selection "Cuts"

-Proof of Concept-

... you just saw 10 ms of data ...

- + Atmospheric μ 7x10¹⁰ (3000/s)
- + Atmospheric v μ >8x10⁴ (1/6 minuts)
- + Cosmic v $\mu \sim 10$

Cuts: A cut is a selection criteria to reduce background and improve the purity of the event sample of interest.

Event Selection: how good is good enough?

-Rule of thumb-

"Neutrino level" "Signal purity comparable to signal strength" "Sensitivity optimization based on S/N ratio"

- Diffuse analyses usually require higher purity than point source analyses
- Transient analyses could be even more background tolerant than the steady point source analyses

Event Selection Example

Jakob van Santen, dissertation 2015 https://inspirehep.net/record/1339582/files/thesis.pdf

Ongoing Physics Analyses (Not Exhaustive)

Where do you find them?

Astrophysical Beam Dump

Astrophysical Neutrinos

Active Galactic Nuclei (AGNs)

Gamma Ray Burst (GRB)

Fermi acceleration:

 $\frac{dN}{dE} \sim E_{\nu}^{-2}$

If cosmic rays interact before decaying, spectrum is softer

At Earth's surface:

 $\nu_e: \nu_\mu: \nu_\tau = 1:1:1$

Expected astro. \vee flux at Earth $E^2 \varphi_{\nu} \sim 10^{-8} \text{ GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$ (TeV-PeV)

Atmospheric Neutrinos

▶ Conventional: $\frac{dN}{dE_{\nu}} \sim E_{\nu}^{-3.7}$ ▶ $\nu_e: \nu_{\mu} \simeq 1:2$ ▶ Prompt: $\frac{dN}{dE_{\nu}} \sim E_{\nu}^{-2.7}$ $\nu_e: \nu_{\mu} \simeq 1:1$

Atmospheric prompt ν_{τ} is ~10 times lower than ν_{μ} and $\nu_{\rm e}$

Diffuse/Atmospheric Neutrinos

https://inspirehep.net/record/1339582/files/thesis.pdf

Conventional: $\sim E^{-3.7}$

Prompt: $\sim E$

 $\sim \mathrm{E}^{-2.7}$

Astrophysical: $\sim E^{-2}$

Prompt neutrino models:

Naumov RQPM: http://link.springer.com/article/10.1007%2FBF02509070

Naumov QGSM: http://link.springer.com/article/10.1007%2FBF02509070

Enberg: Phys. Rev. D, 78(4):043005

Martin: http://arxiv.org/abs/hep-ph/0302140v2

Diffuse: extremely-high energy cosmogenic neutrinos 15

Diffuse Astrophysical Neutrinos: Detection Strategy

(1) Veto method: all sky, all flavor, starting events

 Containment required, effective volume smaller than detector

(2) Through-going events: northern sky, v_{μ} CC and muonically decay v_{τ} CC events

 No containment required, effective volume larger than detector

Diffuse: up-going Muon Neutrinos South Pole Air showe ↓ µ-dominated v only 2.6 PeV deposited, Nort

- 352, 294 events, highest 2.6 PeV
- Reject pure atmo. origin at 5.6σ
- No point sources, no clustering
- Astro. flux best fit:

 10^{-4}

 10^{-5}

 10^{-6}

18

Diffuse: Astrophysical Tau Neutrinos (v_T)

Schematic v_{τ} CC interaction in IceCube

Donglian Xu | IceCube BootCamp 2017: Physics Analyses | June 8, 2017

19

SOUTH POLE NEUTRINO OBSERVATOR

Precision measurement of neutrino flavor ratio at Earth

20

- Test standard oscillation over extremely long baselines
- Probe dominant emission processes at source

Constrain new physics models.

Atmospheric Neutrino Spectra

Best fit prompt flux for a given astrophysical $\boldsymbol{\gamma}$

[Error band is 68% C.L.]

Phys.Rev. D91:122004,2015

Honda HKKMS2007: 2.2 PAstrophysical Spectral 1908 6,2007

2.2 2.3 2.4 2.5 2.6 Astrophysical spectral index (γ)

Where are Astrophysical Neutrinos from?

Source identification requires good angular resolution

Multi-messenger enables correlating to known sources

black

holes

AGNS, SNRS, GRBS...

They point to their sources, but they can be absorbed and are created by multiple emission mechanisms.

Neutrinos

р

They are weak, neutral particles that point to their sources and carry information from deep within their origins.

air shower

Eart

٠

Cosmic rays

They are charged particles and are deflected by magnetic fields.

Likelihood:
$$\mathcal{L}(\vec{x}_s, n_s, \gamma) = \prod_i^N (\frac{n_s}{N} S_i + (1 - \frac{n_s}{N}) \mathcal{B}_i)$$

The source probability density S_i :
 $S_i = \mathcal{N}(r_i) \times \mathcal{E}(E_i) \times \mathcal{T}(T_i)$
Space angle p.d.f. energy p.d.f. time p.d.f.

The background probability density \mathcal{B}_i also contains a space, energy, time component .

Test Statistics:
$$D = -2\log\left[\frac{\mathcal{L}(n_s = 0)}{\mathcal{L}(\hat{n}_s, \hat{\gamma})}\right] \times \operatorname{sign}(\hat{n}_s)$$

Braun, Jim, et al. Astroparticle physics 33.3 (2010): 175-181.

23

Neutrino Point Source Searches

- Unbinned likelihood is more powerful than binned one
- Sensitivity gained when more (correct) information is provided

Braun, Jim, et al. Astroparticle physics 33.3 (2010): 175-181.

Spatial clustering

Spatial & Time clustering

Background free within the prompt time window. One coincident event could be statistically significant.

Neutrino Oscillations through the Earth

The neutrinos come from different zenith angles (θ_z) traversing different layers of the Earth

core : $\cos \theta_z \sim [-1, -0.8]$ mantle : $\cos \theta_z \sim [-0.8, -0.1]$ crust : $\cos \theta_z > -0.1$

Atmospheric Tau Neutrino Appearance

- Measure tau appearance in terms of cascade excess
- High statistics sample

Atmospheric Neutrinos Oscillating to Sterile Neutrinos 30

Supernova: SN DAQ

- Supernova
 - Uniform illumination in the ice
 - ~ 0.5 to 1×10^6 events in 10 seconds
 - DOM to DOM correlated increase in detector noise
- Advantage
 - Low DOM noise ~280 Hz
 - High Statistics 0.25% error
 - 2 ms time resolution
- Disadvantage
 - No pointing
 - No individual events
 - No energy information

Supernova rate in the Galaxy: 3±2 per century

Donglian Xu I IceCube BootCamp 2017: Physics Analyses I June 8, 2017

20 MeV positrons DOM 0 Cm 1 meter

B. Riedel

Cosmic Rays: IceTop + IceCube

IceTop: Cosmic-ray anisotropy (10-3) in the southern hemisphere

<u>IceTop+IceCube:</u> chemical composition <u>IceTop:</u> all-particle cosmic ray energy spectrum in PeV - EeV

- Indirect dark matter search
 - The Sun
 - Galactic Center
- Slow Monopole

. . .

World's best limits on WIMP's **spin-dependent** cross sections

Backup Slides

Astrophysical Neutrino Flavor Ratios

M. Bustamante, J. F. Beacom, and W. Winter, Phys. Rev. Lett. 115, 161302 (2015). C. A. Argüelles, T. Katori, and J. Salvado, Phys. Rev. Lett. 115, 161303 (2015).

