IceCube Flashers

Dawn Williams University of Alabama IceCube Bootcamp 2017 Madison, WI

IceCube Detector references

- The IceCube Neutrino Observatory: Instrumentation and Online Systems
 - https://arxiv.org/abs/1612.05093
- Calibration and Characterization of the IceCube Photomultiplier Tube
 - https://arxiv.org/abs/1002.2442
- The IceCube Data Acquisition System: Signal Capture, Digitization, and Timestamping

- https://arxiv.org/abs/0810.4930

- Measurement of South Pole ice transparency with the IceCube LED calibration system
 - https://arxiv.org/abs/1301.5361

IceCube

- DOM = digital optical module
 Basic sensor unit
- String = cable with 60 DOMs
 86 strings in final detector
- IceTop = surface detector
- Inlce = all strings
- DeepCore = closely spaced center strings

\langle	ρ
\langle	5
\langle	5
\langle	\mathbf{b}
\langle	5
\langle	5
\langle	5

IceCube Strings

IceCube Digital Optical Module (DOM)

Every DOM in IceCube is equipped with flasher LEDs

This gives us a controlled light source at every location in the detector

- Photomultiplier tube or PMT = light detector
- HV = high voltage
- Photoelectron: an electron ejected from a metal surface in the PMT by a photon
- Mainboard = digitizing electronics
- ATWD = analog transient waveform digitizer
 - 128 samples, 3 ns per sample
- FADC = fast analog to digital converter
- Waveform = digitized current pulse
- Timestamp = time a waveform was recorded
- Flashers = onboard LEDs for calibration

IceCube PMT

Fig. 4.1 Schematic of a photomultiplier tube.

DOM Output: single photoelectron

This is what we record when light hits the DOM: a waveform

DOM output: complex waveform

- Hit = single DOM sees light (threshold = 0.25 PE)
- Local coincidence = neighboring DOMs see light within a certain time window
- Hard Local Coincidence (HLC) = no information is sent on unless local coincidence condition is met
- Soft Local Coincidence (SLC) = only minimal information is sent on unless local coincidence condition is met
- These decisions are all made in the ice by the onboard electronics

- Trigger = multiple DOMs hit in a certain pattern or time window
 - Simple majority (SMT) = some number of DOMs hit, currently 8, i.e. SMT8
 - Calibration trigger = flashers
 - Minimum bias/minbias trigger = capture whatever is in the detector regardless of pattern
 - Many others

- Event = all information captured within a certain time window around a trigger
 - An event may have multiple triggers
- Event Builder = software that constructs events
- Processing and filtering (PNF)
 = software that runs online data reduction
- Online = realtime data processing
- Offline = non-realtime data processing

An IceCube neutrino ("Big Bird")

Sources of light in the ice

- Occasional glowing due to the DOM HV supply (?)
- Dark noise mostly in the glass, radioactive decay, scintillation (hundreds of Hz per DOM)
- Cosmic ray muons (several kHz)
- Products from neutrino interactions
- Artificial light sources
 - LED flashers
 - Laser "standard candle"
 - Laser lighting for the "Swedish camera"

Calibration: from photon to data

Propagation through ice

We use flashers:

- 1) To verify that DOMs are properly connected and functioning during commissioning
- 2) To verify the detector geometry
- 3) To study the optical properties of the ice
- 4) To study the response of the DOMs themselves

Flasher wiki references

- https://wiki.icecube.wisc.edu/index.php/Flashers
- https://wiki.icecube.wisc.edu/index.php/CDOM_Info

LED Flasher Board

Flasher properties

 The vast majority of IceCube LEDs are ETG-5UV405-30, nominally 405 nm wavelength, actually 399 nm, FWHM of 14 nm

cDOMs

- 8 DOMs each on string 14 and string 79 have multiwavelength flashers called cDOMs
- For the remainder of this lesson we will use the standard 400 nm flashers

Flasher properties: Angular emission profile (beam width)

- Nominal beam width is 30° in air
- In ice, accounting for refraction from air to glass and glass to ice, the beam width is 10°
- Can be modeled as a 2 D Gaussian with σ = 10°
 in both directions

Beam Pattern

Flasher operating parameters

Parameter	Allowed values	Description
string	1 - 86	String where flashing DOM is located
DOM	1-60	Flashing DOM number
brightness	0 - 127	LED driver current intensity, up to 240 mA
width	0 - 127	2x duration of LED current pulse, in ns
mask	0001 - OFFF	Hex representation of bitmask controlling which LEDs flash
rate	0 - 610	Rate of LED flashes in Hz

Flasher operation: String and DOM

- Multiple flashers can be run simultaneously
- The data acquisition system can withstand about 3x the normal background rate from muons (~70 bright flashing DOMs simultaneously)
- A typical run might have 4-6 flashers simultaneously
- It is not advised to have neighboring flashers on the same string run together
- Old DOMs (produced in 2004 and 2005) have "afterburst" properties which make them difficult to run
- Flashers cannot be synchronized using the current firmware

Running flashers: brightness and width

- Maximum photon output per LED is 1.17e10 photons per flash
- With all 12 LEDs running this is about equal to a 500 TeV cascade
- The brightness and width parameters determine the photon output
 - Width: duration of driver current, effectively 10-70 ns
 - Brightness: amplitude of driver current, up to 240 mA

Brightness setting

Running flashers: mask

The 12 LEDs can be run in an combination. Each LED is controlled by a bit, and the "mask" is the hex representation of the bits

Example: flash LED 7 only

HEX mask is 0064

Running flashers: mask

The 12 LEDs can be run in an combination. Each LED is controlled by a bit, and the "mask" is the hex representation of the bits

Example: flash all tilted LEDs

HEX mask is 003f

Running flashers: mask

The 12 LEDs can be run in an combination. Each LED is controlled by a bit, and the "mask" is the hex representation of the bits

Example: flash all horizontal LEDs

HEX mask is OfcO

Running flashers: rate

- Maximum rate is 610 Hz, lower rates are 610 Hz divided by a power of 2
- The setting in the configuration is an integer, the actual value of the rate is the next lowest value to that integer which is 610 divided by a power of 2
- So for example if the rate setting is 2, the actual rate is 1.191 Hz = 610 Hz/2⁹

Flasher data processing

We will now look at some flasher data and do some exercises to look at the pulses detected by neighboring DOMs from a flasher.

