
frequency regime. The 14 below-horizon events are phase-
inverted compared to the two above-horizon events, as
expected for specular reflection [Fig. 3, top panel]. From
these observations we conclude that ANITA detects a
signal, seen in most cases in reflection from the ice sheet
surface, which originates in the earth’s atmosphere and
which involves electrical current accelerating transverse
to the geomagnetic field. Such observations are in every
way consistent with predictions of geosynchrotron emis-
sion from cosmic ray air showers. The robust correlation
shown in Fig. 4 is strong evidence that the geosynchrotron
radiation from cosmic rays is the dominant emission
mechanism in this geometry and frequency range. Since
these far-field observations result in a simple plane wave at
the detector, these data will provide strong constraints on
cosmic ray radio emission models.

Our data represent the first broadband far-field measure-
ments of geosynchrotron emission in the ultra high fre-
quency range. The average observed radio-frequency
spectral flux density of the above- and below-horizon
events, shown in Fig. 3, is consistent with an exponential
decrease with frequency, with a mean exponential falloff of
ð180" 13 MHzÞ$1 for reflected events and ð197"
15 MHzÞ$1 for direct events. This observation indicates a
much flatter decay with frequency than that given by ex-
trapolations from ground-based measurements at lower
frequency and parametrizations [21,22]. The lack of any
statistically significant difference in the spectra for the
direct and reflected events indicates that ice roughness is
unimportant for the average surface reflection. To estimate
the electric field amplitude at the source of these emissions,
we model the surface reflection using standard physical-
optics treatments developed for synthetic-aperture radar
analysis. Such models use self-affine fractal surface pa-
rameters [23] and Huygens-Fresnel integration over the
specular reflection region to estimate both amplitude loss
and phase distortion from residual slopes or roughness. We
used digital elevationmodels fromRadarsat [24] to estimate
surface parameters for each of the event reflection points,
known to a few km precision. In most cases the surface
parameters are found to be smooth, yielding only modest
effects on the reflection amplitude; in a minority of the
events, surface parameters were estimated to be rougher,
but still within the quarter-wave-rms Rayleigh criterion for
coherent reflection [25]. Fresnel reflection coefficients were
determined using amean near-surface index of refraction of
n ¼ 1:33, typical of Antarctic firn.
To estimate the primary energy for the observed events,

we used a data-driven maximum likelihood fit to the

FIG. 3 (color). Top panel: Overlay of the 16 UHECR event
Hpol pulse shapes, showing the two direct events (red) and 14

reflected events (blue) with inverted phase. Inset: Average pulse
profile for all events. Bottom panel: Flux density for both the
averaged direct and reflected events, along with fits to an
exponential. Errors at low frequency are primarily due to system-
atic uncertainty in the antenna gains, and to thermal noise
statistics at higher frequencies.

FIG. 4 (color). Plane of polarization of UHECR events com-
pared to the angle of the magnetic field local to the event and
Lorentz force expectation (red line). Reflected events are cor-
rected for surface Fresnel coefficients. Angles are from the
horizontal.
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