
3

−20 −15 −10 −5 0 5 10 15 20 25 30
−3
−2
−1

0
1
2

time, ns

re
fe

re
nc

e 
vo

lts

 

 

−20 −15 −10 −5 0 5 10 15 20 25 30

−60
−40
−20

0
20
40

time, ns

fie
ld

 s
tre

ng
th

, V
/m

/M
Hz

 

 

raw RF Cherenkov
partially deconvolved

raw impulse response
partially deconvolved

FIG. 3: Top: Raw, and partially-deconvolved impulse response of
the ANITA receiver system. Bottom: Pulse received during the T486
experiment in an upper-ring antenna near the peak of the Cherenkov
cone, also showing the raw pulse, and partially partially-deconvolved
response. The apparent “ringing” artifact of the raw impulses is due
to group delay variation of the passband edges of the bandpass filters
employed.

The ice was contained in a 10 cm thick insulating foam-lined
box, and a 10 cm foam lid was used during operation, along
with a freezer unit, to maintain temperatures of between -5
to -20 C. Such temperatures are adequate to avoid significant
RF absorption over the several m pathlengths of the radiation
through the ice [9].
The ANITA payload, consisting of an array of 32 dual-

polarization quad-ridged horn antennas was used to receive
the emission at a location about 15 m away from the center of
the target, as shown in Fig. 2. The antenna frequency range
is from 200-1200 MHz, which covers the majority of the fre-
quency range over which the RF transmissivity of ice is at its
highest [9]. Eight additional vertically polarized broadband
monitor antennas (four bicones and four discones) are used
to complement the suite of horn antennas. The ANITA horn
antennas are arranged so that adjacent antennas in both the
lower and upper payload sections respond well even to a sig-
nal directed along their nearest neighbors’ boresights. This
allows multiple antennas (typically 4 to 6 horns and 3 to 4 of
the bicone/discones) to sample the arriving wavefront. The
signals are digitized by custom compact-PCI-based 8-channel
digitizer modules [22], 9 of which are used to record all 72
antenna signals simultaneously at 2.6 Gsamples/sec.
Figure 3 shows an example of the impulse response of the

system (top), and one of the measured waveforms near the
peak of the Cherenkov cone. The apparent “ringing” of the re-
ceiving system is due to the group delay of the edge response
of the bandpass filters, but most of the energy arrives within a
fraction of a nanosecond, as determined in previous measure-
ments of the Askaryan effect [7]. In the measured T486 wave-
form of Fig. 3 (bottom), later-time reflections from shielding
and railing near the target, as well as the payload structure,
introduce some additional power into the pulse tail.

FIG. 4: Left: Field strength vs. frequency of radio Cherenkov radia-
tion in the T486 experiment. The curve is the theoretical expectation
for a shower in ice at this energy. Right: Quadratic dependence of
the pulse power of the radiation detected in T486, indicating the co-
herence of the Cherenkov emission.

In Figure 4 (left) we display measurements of the abso-
lute field strength in several different antennas, both upper
and lower quad-ridged horns, bicone, and discone antennas.
The discone and bicone antennas have a nearly omnidirec-
tional response and complement the highly directive horns
by providing pulse-phase interferometry. The uncertainty in
these data are dominated by systematic, rather than statistical
errors, and are about ±40% in field strength (±3 dB). These
are dominated by a combination of the 1-2dB uncertainty in
the gain calibration of the antennas, and by comparable un-
certainties in removing secondary reflections from the mea-
sured impulse power. The field strengths are compared to a
parameterization based on shower+electrodynamics simula-
tions for ice [10, 11], and the agreement is well within our
experimental errors. Figure 4(right) shows results of the scal-
ing of the pulse power with shower energy. The dependence is
completely consistent with quadratic scaling over the energy
range we probed, indicating that the radiation is coherent over
the 200-1200 MHz frequency window.
Figure 5 shows the measured and predicted angular depen-

dence of the radiation. The Cherenkov cone refracts into the
forward direction out of the ice, and is clearly delineated by
the data. Here we show statistical+systematic errors within
a measurement run; the overall normalization (with separate
systematic error) is taken from Fig. 4. We scale these data
within the overall systematic errors to match the peak of the
field strength. The radiation frequency limit where full coher-
ence obtains is given approximately by the requirement that
kL ! 1, where the wavenumber k = 2πnν/c for frequency


