Ideas for Non-Imaging Light Collection

Segev BenZvi, Juanan Aguilar, Chris Giebink UR, ULB, PSU (EE)

Improving LC in WCDs

- It would be nice to improve the photon collection efficiency of light sensors in HAWC-like WCD arrays
 - More photons = better (always?)
 - Background suppression improves with N_{hit}
 - Perhaps reduce total number of photosensors needed, which is important for holding down costs
- Note: @ HAWC trigger threshold we're actually particle starved, not photon starved. You can tell just by looking at sub-TeV CORSIKA showers. So going to very high altitude is quite important!

Why >I PMT Used?

Want tall WCDs, but that's expensive. In shorter tanks need sensors at rim to view inclined particles

Non-Imaging LC

Geometric concentration: use Winston cones with PMTs to collect light and/or make the photocathode response more uniform

Concentration ratio: bound by $C \le n^2 \sin^2 \theta_{out} / \sin^2 \theta_{in}$

Inelastic Concentration

Use a material that absorbs high-energy photons and isotropically re-emits low-energy photons

- Wavelength shifter (WLS): concentrate light at peak response of photosensor, usually >400 nm
- Use total internal reflection to guide light to sensor. Note the light losses outside the TIR region

Combined Approach

Lots of work on this topic in the field of solar cell optimization: non-imaging luminescent concentrators

Development of novel WLS materials with anisotropic emission: eliminate loss cones, boosting the LC efficiency. Combine with geometric concentration for high gain

Edge-on vs Face-on Readout

- In a flat LC we'd want to read out along the edge where TIR concentrates all the photons
- Ideally: make the panel extremely thin so that the area to edge ratio is huge
- Gain scales like $G \sim r/t$, and $t \sim I \ \mu m$ for anisotropic LC, so in principle $G \sim 10^3$

Back to the Real World

- Unfortunately, it's hard to stretch a photosensor into a onemicron hoop. Also, a flat sensor is a bad choice if wide angular acceptance is required (poor A_{eff} @ large zenith)
- Alternative from the field of solar luminescent concentration: optical fiber concentrators

Southern Wide FOV Detector Workshop

Fiber Concentrator Gain

- Gain of WLS fiber LC goes like $G \sim A_{\text{fibers}}/A_{\text{SiPM}} \cdot \eta_{\text{opt}}$
- A_{fibers} scales with number of fibers. Can easily get huge area ratio with respect to photosensor while arranging the fibers in any desired shape
- η_{opt} is the optical efficiency of the system: fluorescence quantum yield, absorption losses, fiber shadowing, and reflection losses at surfaces. Typical is $\eta_{opt} < 1\%$, with measurements of $G \sim 10$ reported in the literature
- May be able to boost η_{opt} to 10% with clever choice of materials. Active research ongoing in solar community

Fiber Concentration

Can we fill the tank with a non-imaging collector that channels light to a single photosensor?

- E.g., a "fiber flower" or "fiber mop"
- Have 3D shape with effective area that does not rapidly decrease with zenith angle

Fiber Concentration

Can we fill the tank with a non-imaging collector that channels light to a single photosensor?

- E.g., a "fiber flower" or "fiber mop"
- Have 3D shape with effective area that does not rapidly decrease with zenith angle

Fiber Light Concentrator

Courtesy N.C. Giebink

• Requirements:

- High refractive index
- High photoluminescence QY
- Fast radiative decay (< I ns)
- Strong absorption < 400 nm
- Long-term stability in water

Prototype @ PSU

Courtesy N.C. Giebink

- PSU: PMMA coated with fluorescent material in the lab. Looking for very speedy polymers (sub-ns fluorescence T_{decay})
- Getting some feedback on materials from solar concentrator community
- My lab: Kuraray WLS fibers left over from T2K R&D

PSU Fiber Flower Gain

Gain of fiber flower measured inside integrating sphere
Naïvely expect G > 100. Optical efficiency matters a lot

U of R "Concentrator"

- More rigid fiber concentrator with a hemispherical shape
- 3D-printed frame made by UR undergraduate Alex Johnson
- Threaded with I-mm PMMA fibers ordered from amazon.com. Easy to scale to larger sizes
- Will replace plain PMMA with Kuraray WLS or fibers from PSU. From literature, expect geometric gains of 3x to 10x

- Combination of geometric and inelastic light concentration ("luminescent concentrators") could have benefits for future WCD arrays
 - Maintain or improve WCD photon detection efficiency with fewer photosensors, cables, readout channels, etc.
 - Bare WLS fiber concentrators allow for flexible 3D designs. Physical robustness is surprisingly good!
- Lab measurements: G ~ 10. Optimizing the fluorescent materials may provide very substantial gains in the future
- Synergies with solar concentrator community, where very similar design problems exist. Work is ongoing