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Reminder Classical Testing

formulate hypotheses H0 (“null”) and H1 (“alternative”) about how data x is generated

choose test-statistic T(x) - some function of data x with different pdfs depending hypothesis
(choice should be guided by considerations of statistical power = probability of test to reject H0)

de-facto standard choice: likelihood ratio test statistic 

asymptotics well understood (Wilks' theorem)



Reminder Classical Testing

formulate hypotheses H0 (“null”) and H1 (“alternative”) about how data x is generated

choose test-statistic T(x) - some function of data x with different pdfs depending hypothesis
(choice should be guided by considerations of statistical power = probability of test to reject H0)

de-facto standard choice: likelihood ratio test statistic 

one (out of many) alternative choices: Bayes Factor = ratio of marginal likelihoods
(in all plots I use -2 log BF to maintain scale)

select threshold for discovery (typically 5 sigma) by fixing Type I error (false discovery)
observe data and perform test

asymptotics well understood (Wilks' theorem)



Bayes Factor = ratio of marginal likelihoods

marginal likelihood
average value of likelihood function throughout entire parameter space w.r.t prior pdf



Bayes Factor = ratio of marginal likelihoods

marginal likelihood
average value of likelihood function throughout entire parameter space w.r.t prior pdf

likelihood = some function 
in theta (not a pdf in theta)

prior = pdf in theta
average 
value

credit:
Roberto Trotta

marginal likelihood very sensitive to prior 
width (unlike posterior intervals)



a toy example
uniform background with possible gaussian signal (known location) - marked poisson process

small signal large signal

possible parameterizations

1) fraction of signal events (parameter of interest) and total rate (nuisance parameter)

2) total signal rate (parameter of interest) and total background rate (nuisance parameter)



Example: fraction of signal events (parameter of interest) and total rate (nuisance parameter)

calculate distributions for BF - prior on signal fraction: uniform(0,1) and LR as function of true signal fraction 

H0: p_s = 0.0 against H1: p_s > 0.0
calculate power of corresponding statistical tests for Type I error rate of alpha=0.05 

Likelihood Ratio



Example: fraction of signal events (parameter of interest) and total rate (nuisance parameter)

calculate distributions for BF - prior on signal fraction: uniform(0,1) and LR as function of true signal fraction 

H0: p_s = 0.0 against H1: p_s > 0.0
calculate power of corresponding statistical tests for Type I error rate of alpha=0.05 

TS distributions different under H0: p_s = 0.0 -> critical values are different (dashed lines)
But are the tests different?

Bayes FactorLikelihood Ratio
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to within statistical precision (nested sampling to compute BF)
both tests deliver same power. 

since TS values correlate well - one would draw identical 
conclusions from both frequentist analyses!



to within statistical precision (nested sampling to compute BF)
both tests deliver same power. 

since TS values correlate well - one would draw identical 
conclusions from both frequentist analyses!

This agreement is NOT a general result. 
Relative performance will depend on the problem.

You will not know which one is the better test, unless you compute the power curve!
(in our problems uniformly most powerful tests very likely don't exist)



Example from IceCube
(not a full bayes factor - average only computed across time dimension of parameter space)

Braun et al (2010)

occam's factor

average likelihood across central time

proposed analysis fully frequentist but not 
a standard likelihood ratio test



Bayesian Use of the Bayes Factor

BF = 
in a full Bayesian analysis there is no need to look at sampling distributions.
BF contains all relevant information (assuming your priors “make sense”).
see Kass & Raftery (1995) ,13k citations ...



Bayesian Use of the Bayes Factor

BF = 
in a full Bayesian analysis there is no need to look at sampling distributions.
BF contains all relevant information (assuming your priors “make sense”).

calculate BF and derive conclusion from Jeffreys or Kass/Rafterys scales

see Kass & Raftery (1995) ,13k citations ...

jeffreys scale Kass/Raftery scale

similar scale as LRT TS



assuming your priors “make sense”
1) theory / previous experiments provide priors -> good.

2) no prior information

BF is not defined for improper priors
BF strongly depends on any cutoff used to make prior proper

(example: upper end of uniform prior)

signal_rate ~ uniform(0, maximum rate)
innocent prior?



assuming your priors “make sense”
1) theory / previous experiments provide priors -> good.

2) no prior information

BF is not defined for improper priors
BF strongly depends on any cutoff used to make prior proper

(example: upper end of uniform prior)

2 options:

A) use some cutoff value and perform 
frequentist analysis with BF as test-statistic

B) read Jim Berger's papers on objective Bayesian 
analysis. e.g. Berger & Pericchi (2004)

signal_rate ~ uniform(0, maximum rate)
innocent prior?

example large maximum rate 
-> “artifically” large evidence for H0



Summary
• Bayes Factors are important tool for Bayesian model selection
• can also be a useful test-statistic for frequentist analysis

• BUT pure Bayesian use of BF hard/tricky in situations without useful 
prior information

in these cases suggest the following

1) frequentist calibration

or

2)  additional steps (training samples, see Berger et al. refs) to generate objective 
     but proper priors for BF computation and subsequent Bayesian testing


