Need for Global Fit Theorists Wish List

penn<u>State</u>

Kohta Murase (Penn State)

September 14 @ U. Tokyo

5

Diffuse Neutrino Flux Spectrum

IceCube @ Neutrino 2018

- 7.5-yr HE Starting Events
 103 events
 (60 events > 60 TeV)
 Best-fit: s=2.87±0.3
- Updates at ICRC 2019
 Best-fit: s=2.89+0.2-0.19
- 8-yr upgoing v_{μ} "track" 36 events at >200 TeV (6.7 σ) Best-fit: s=2.19±0.10
- Updated at ICRC 2019 9.5-yr upgoing v_{μ} "track" Best-fit: s=2.28+0.08-0.09

Importance of Combined Analysis

Two basic questions

- 1. one component power-law or structure? (origin of cosmic neutrinos below 100 TeV ?)
- 2. neutrino flavor consistent w. 1:1:1?

For astro/BSM model perspectives Tests for non-power law (arbitrary) neutrino spectra with different (arbitrary) flavor ratios

- astrophysical neutrinos: may not be power-law
- flavor ratios depend on mechanisms (E-dependent)
- BSM effects can easily modify shapes & flavor ratios HOW GLOBAL? (ULTIMATE: MULTIMESSENGER?)

Multi-Messenger Cosmic Particle "Backgrounds"

Energy generation rates are all comparable to a few x 10⁴³ erg Mpc⁻³ yr⁻¹

Astrophysical Extragalactic Scenarios

$E_v \sim 0.04 E_p$: PeV neutrino $\Leftrightarrow 20-30$ PeV CR nucleon energy

s_v≠s_{CR}

E_v

Cosmic-ray Accelerators (ex. UHECR candidate sources)

0.1/TeV

PeV

Cosmic-ray Reservoirs

Astrophysical Extragalactic Scenarios

$E_v \sim 0.04 E_p$: PeV neutrino $\Leftrightarrow 20-30$ PeV CR nucleon energy

Cosmic-ray Accelerators (ex. UHECR candidate sources)

Cosmic-Ray Reservoirs

Ex. AGN Embedded in Galaxy Clusters/Groups

"Unifying" >0.1 PeV v, sub-TeV γ , and UHECRs (above 2nd knee at 10¹⁷ eV)

600↓ 17.5

18.0

18.5

log E[eV]

19.0

19.5

20.0

smooth transition to cosmogenic v spectrum

Neutrino-Gamma-UHECR Connection?

(grand-)unification of neutrinos, gamma rays & UHECRs simple flat energy spectrum w. s~2 can fit all diffuse fluxes

- Explain >0.1 PeV v data with a few PeV break (theoretically expected)
- Escaping CRs may contribute to the observed UHECR flux

Neutrino-Gamma Connection

Generic power-law spectrum: $\propto \epsilon^{2-s}$, transparent to GeV-TeV γ from Murase, Ahlers & Lacki (2013) 10⁻⁵ IceCube (HESE 3yr) pp Fermi (IGRB) 10⁻⁶ $E^2 \Phi$ [GeV cm⁻² s⁻¹ sr⁻¹ 10⁻⁷ s=2.18 s=2.0 10⁻⁸ 10⁻⁹ s=2.010⁻¹⁰ 10³ 10² 10⁵ 10⁶ 10⁰ 10⁴ 10¹ 10⁷ 10^{8} E [GeV]

s_v<2.1-2.2 (for extragal.); insensitive to redshift evolution of sources

 physical connection between v & γ backgrounds? contribution to diffuse sub-TeV γ: >30%(SFR evol.)-40% (no evol.)

PHYSICAL REVIEW D 88, 121301(R) (2013)

Testing the hadronuclear origin of PeV neutrinos observed with IceCube

Kohta Murase,¹ Markus Ahlers,² and Brian C. Lacki³

We consider implications of the IceCube signal for hadronuclear (pp) scenarios of neutrino sources such as galaxy clusters/groups and star-forming galaxies. Since the observed neutrino flux is comparable to the diffuse γ -ray background flux obtained by *Fermi*, we place new, strong *upper* limits on the source spectral index, $\Gamma \leq 2.1-2.2$. In addition, the new IceCube data imply that these sources contribute *at least* 30%-40% of the diffuse γ -ray background in the 100 GeV range and even $\sim 100\%$ for softer spectra. Our results, which are insensitive to details of the *pp* source models, are one of the first strong examples of the multimessenger approach combining the *measured* neutrino and γ -ray fluxes. The *pp* origin of the IceCube signal can further be tested by constraining Γ with sub-PeV neutrino observations, by unveiling the sub-TeV diffuse γ -ray background and by observing such *pp* sources with TeV γ -ray detectors. We also discuss specific *pp* source models with a multi-PeV neutrino break/cutoff, which are consistent with the current IceCube data.

Lowering the Threshold: Medium-Energy Excess?

Not conclusive but perhaps a structure in the neutrino spectrum?

Medium-Energy Excess Problem

10-100 TeV shower data: large fluxes of ~10⁻⁷ GeV cm⁻² s⁻¹ sr⁻¹

KM, Guetta & Ahlers 16 PRL

Fermi diffuse γ -ray bkg. is violated (>3 σ) if ν sources are γ -ray transparent

\rightarrow existence of "hidden (γ -ray dark) sources"

(v data above 100 TeV can be explained by γ -ray transparent sources)

Hidden Cosmic-Ray Accelerators?

Choked Jets as Hidden Neutrino Factories

Stacking Searches for Neutrinos from Supernovae

Stacking analyses on SNe (~week) w. open SN catalogue

• Present constraints: $E_{cr} < 10^{51} - 10^{52}$ erg (if all SNe emit vs)

 Stacking analyses w. shower+track (ultimately global) data? (tracks are better for transients due to time coincidence)

AGN Cores as Hidden Neutrino Factorioes

AGN corona: promising sites of CR acceleration (ex. Hoshino 12, Kimura, KM & Tomida 19)

- Robust predictions for MeV γ (AMEGO) & sub-PeV ν (Gen2/KM3Net)
- Stacking analyses w. shower+track (ultimately global) data

Galactic Contribution?

Isotropic limits (Galactic halo CR model)

$$n_{\rm H} = (10^{-4.2 \pm 0.25}) (R/R_{\rm vir})^{-0.8 \pm 0.3}$$

- Template analyses are also feasible (depending on CR distribution) (spatial information needed)
- imits at TeV-PeV Kermi γ-ray data imply s_v < 2.0 → support extragalactic scenarios

Galactic Contribution?

Su et al. 2010

- Correlation analyses w. shower+track (ultimately global) data (spatial information needed)
- HAWC limits exist and seem to constrain the model

Why Important

Importance of identifying hidden neutrino sources

- Dense environments that can only be probed by neutrinos
- Huge non-thermal energy budget in the Universe

If 10-100 TeV neutrinos are of astrophysical & isotropic

- CR reservoir models predict a structure in the spectrum (hidden source population + CR reservoir population)
- Galactic models also predict a structure in the spectrum (Galactic contribution + extragalactic contribution)
- No structure -> single hidden source population
- Unlikely to be a simple power-law (broken power law?)
- Keep the Gen-2 threshold not far from 10 TeV (~10-30 TeV)
 & improve angular resolutions

BSM Explanations for Medium-Energy Data?

Multi-Messenger Constraints on Decaying DM

Green (DM only for global fit), Blue (DM+power law for global fit)

BSM Explanations for Medium-Energy Data?

Effects on Cosmic Neutrino Spectra

Neutrino Flavors

റ

Neutrino oscillation

$$P_{\alpha \to \beta}(t) = \left| \sum_{k=1}^{n} U_{\beta k}^{*} \exp(-iEt) U_{\alpha k} \right|^{2} \square$$

U: lepton mixing matrix (Maki-Nakagawa-Sakata)

long baseline limit: $v_e:v_{\mu}:v_{\tau} \sim 1:1:1$ (if no astrophysical complications)

Flavor Ratios are E-Dependent

- Low: matter effect
- High: muon cooling

Bustamante, Beacom & Winter 15 PRL see also Arguelles, Katori & Salvado 15 PRL

Constraints from Neutrino Flavors

Shower-to-track ratio -> flavor information (ex. IceCube Collaboration 15 ApJ) BSM physics tests w. sufficient statistics (especially by Gen2)

Shoemaker & KM 16 PRD

Future Constraints on Neutrino Decay

Pseudo-Dirac Neutrinos

Summary

Global fit results could address whether a single power-law works or not Shower/MESE data may bring us "surprises" about the non-thermal universe

HE Neutrino Origin?

pp scenarios (cosmic particle unification) require two component models 10-100 TeV data: hidden CR accelerators (neutrinos are "unique") must be a broken power-law or other complicated spectra

BSM physics?.

Decaying dark matter, neutrino decay, neutrino self-interactions etc.

Wish list?.

"ideal": tool enabling one to tests arbitrary spectra & flavor ratios Not only isotropic background but also extended Galactic sources

- different astrophysical spectral (and spatial) templates: provided by theorists
- different astrophysical flavor ratios: could be treated as systematics
- BSM tests: dedicated analysis by experimentalists/tool available for theorists