
Dynamic Stack CORSIKA
Or Multiprocess Server

Kevin Meagher
Global Fit Workshop
Tokyo, Japan
14 September 2019

Overview

• Current state of IceCube Simulation with CORSIKA
• Advantages of Dynamic Stack and Server CLSim
• Current status of software development
• Topics of Hackathon/Discussion

!2

How CORSIKA currently works

IceTrayCORSIKA
Executable

Generates Primary Particle Spectrum
 (Energy, Direction Position)

Simulates air shower interactions

Propagate Muons

CORSIKA
BINARY
FORMAT

Propagate Photons

Detector Simulation

I3MCTree I3PhotonGPU

PROPOSAL CLSim

Simulates
Detector Response

CORSIKA files are generated by a separate CORSIKA binary
IceTray then processes in a linear fashion by each module
First Muons are propagated by by PROPOSAL,
Then Photons are processed by CLSim using the GPU
The entire I3Photon sequence is stored in memory before
being converted to the binned I3MCPE format !3

I3Photon = Lots of Memory
I3MCPE = Uses less memory

Why is CORSIKA so hard to produce?

Low Energy:

• CORSIKA shower files are created separately and
transferred at the start of the job which saturates IO

Medium Energy:

• CORSKIA showers need more CPU than GPU which is
an inefficient use of our cluster resources (CPUs sit idle
while waiting for GPUs to finish)

High Energy:

• Large showers push the memory limits on nodes.
CLSim needs to store the entire event (both the MCTree
and I3Photons) in memory. Power-law statistics require
that we have to allocate memory for very rare events.

!4

IceTray

Propagate Muons

CORSIKA
Server

Propagate Photons

Detector Simulation

I3MCPE

Generator Module

How Multiprocess Server CLSim works

CLSimServer

GPU

CLSimClient

PROPOSAL

Generates Primary
Cosmic Ray Particles
(Similar to MuonGun)

Simulates
Detector Response

Propagate Air Shower

CLSimClient passes
individual particles from the
MCTree to the CORSIKA
Server, to PROPOSAL to
the CLSimServer

I3MCTree

I3MCPE are created
directly from the output
of each individual
CLSim propagation
Saving memory

!5

What do we gain from this?

No Need to break up CORSIKA jobs by energy:
• Low Energy:

• No need to generate CORSIKA files separately
(prevents IO bottleneck)

• Medium Energy:
• Multiple instances of IceTray can share a CLSimServer

resulting in better CPU utilization
• High Energy:

• Individual particles are passed from CORSIKA to
PROPOSAL to CLSim and binned I3MCPE are made
for each particle from CLSim rather than the entire
event. This significantly reduces the memory footprint

• Multiple instance of IceTray can run in the same cluster
job

!6

Event More Benefits:
Oversampling and Other Tricks

• Cosmic ray air shower primary can be generated according to
arbitrary spectral and spatial distributions
• Generate primaries directly on the detector cylinder before

cosmic ray propagation (similar to MuonGun)
• Oversample IceCube muon “Lanes”

• Different CORSIKA configuration cards can be sent to
different events
• Only populate EM component if the shower hits IceTop.
• Set muon energy threshold based on the inclination of the

shower
• CORSIKA propagation of a shower can be under-sampled

based on shower development
• Kill events with low leading energy muon

• Oversample coincident events
• e.g. 1 for coincident showers, 10-4 for single showers !7

!8

Fixed bug in PROPOSAL

• In the past, PROPOSAL
identified stopping muons
with negative energy but new
version stored rest mass

• This was caused stopping
muons to be regenerated,
effectively doubling the
amount of light in the
detector

• Bug was tracked down by
Jakob van Santen

• Fixed by Jan Soedingrekso in
r175047

!9

!10

This was accomplished by
simulating less muons

Pulses observed in DOMs match
last release of simulation software

Monoenergetic Single
Direction Cosmic Rays

Current Status

• Monoenergetic showers shows excellent agreement with
previous versions of simulation

• Full spectrum 2π job just finished on cluster: results soon
• To Do: implement and optimize multiple processes in

same cluster job
• Develop appropriate weighing: put all information in “S”

frame and save it in hdf5 file
• Determine oversampling/biasing scheme

!11

Topic for Hackathon:

How to oversample simulation to maximize usefulness in
analyses?

Currently proposed:
• Oversample events with high leading energy muon
• Oversample DeepCore “Lanes”
• Oversample Coincident showers
• Whatever you can think of

!12

Open Souce nuflux

• Neutrino-flux and NewNuFlux are still being used in a
substantial number of analyses

• Should be replaced with MCEq for future analyses
• I was asked to prepare it for release as an IceCube open

source project
• Renamed to “nuflux” to comply with PEP8
• No changes to any numerical results
• Improvements: build system, documentation, remove

segfaults, unit tests, example scripts, etc…
• Add a repository of IceCube spectra text files
• Talk to me at hackathond or see talk in Software II on

Monday at 14:45

!13

Backup

!14

PROPOSAL Bug

[I3MMCTrack = [
 (xi, yi, zi, ti, Ei) = (404.223 ,-0.996252 ,800 ,4522.09 ,0.338673)
 (xc, yc, zc, tc, Ec) = (-44.3509 ,-0.849819 ,25.6933 ,5404.34 ,0)
 (xf, yf, zf, tf, Ef) = (-522.694 ,-0.693668 ,-800 ,5404.34 ,-1330.06)
 Elost = 0.338673

!15

[I3MMCTrack = [
 (xi, yi, zi, ti, Ei) = (452.997 ,64.3785 ,800 ,4435.44 ,50.5399)
 (xc, yc, zc, tc, Ec) = (343.927 ,64.9432 ,611.144 ,6928.48 ,0.105658)
 (xf, yf, zf, tf, Ef) = (343.927 ,64.9432 ,611.144 ,6928.48 ,0.105658)
 Elost = 50.4343

Earlier versions of PROPOSAL/MMC used the sign of the
final energy as a flag to designate stopping muon track

Sept 2018 PROPOSAL received a major update, at that
update the final state for stopping muons was changed to the
rest mass

Muon Rest Mass

Negative Sign

See Bug #2340 for details

https://code.icecube.wisc.edu/projects/icecube/ticket/2340

Current Status

• CORSIKA binary compiled with dyadic stack c++
extensions from Dominic Baack and Jakob van Santen
was successfully compiled on cluster with py3-v4 cvmfs
(requires gcc>5.2 and boost>=1.64)

• Server CLSim branch was merged into trunk (Jan 2019)
• Custom Primary generator passed to CORSIKA finished
• Bug in PROPOSAL Fixed 14 August 2019
• Cluster is currently producing Dynamic Stack/multi

process CORSIKA for evaluation

!16

