SnowStorm Status Diffuse Workshop on Global Fit

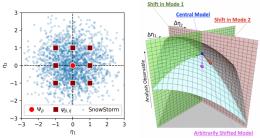
Ben Smithers

UT Arlington

September 15th 2019

SnowStorm Motivations

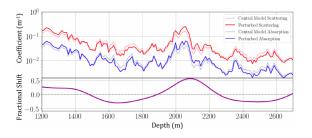
- Moving into a regime where uncertainties become less statistically, and more systematically, limited
 - the 'discrete ice model' is starting to become insufficient to deal with ice uncertainties within statistical precision
- Motivates a continuous and complete description of ice systematics
- SnowStorm: a method for the treatment of systematic uncertainties depending on a large number of nuisance parameters


The paper is out! \rightarrow https://arxiv.org/abs/1909.01530 \leftarrow

SnowStorm Basics

MC systematic nuisance parameters are sampled continuously around a central model

 \rightarrow one MC set covers all systematics using this approach.

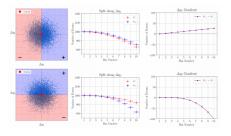

Does it work? Yes.

- Built upon a strong mathematical framework
- Integrated SnowStorm ensemble approaches the central model as number of perturbations grows

Visualization with IceCube Ice

Below, depth dependence of scattering/absorption lengths perturbed by tweaking modes in their Fourier decomposition (perturbation widths from flasher fit data)

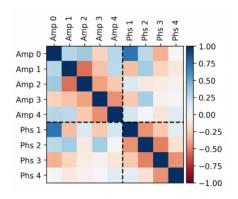
From the SnowStorm Paper, pg 8


For rigorous mathematical overview, see the Snowstorm paper.

Gradient Extraction

How to understand effects of nuisance parameters in your analysis?

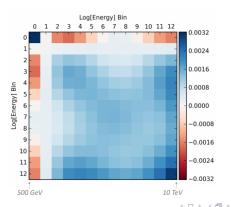
Divide Sample into two sub-samples along a nuisance parameter


- Bin the events in analysis space
- Related 'Nuisance Gradient' element proportional to the difference in bin occupation
- Repeat for each nuisance parameter i, analysis space quantity α , yielding nuisance gradient $G_{i,\alpha}$

Covariance Matrix in Analysis Space

Ideally...

- you know what the nuisance parameters are
- ullet can calculate nuisance parameter covariance $(\Xi_{i,j})$ from calibration data



Covariance Matrix in Analysis Space

Can be combined with Nuisance Gradient (G) to calculate covariance matrix Σ in analysis space:

$$\Sigma_{\alpha,\beta} = G_{i,\alpha} \Xi_{i,j} G_{j,\beta}$$

ightarrow can get uncertainty in analysis space

SnowStorm in IceCube

- SnowStorm is applicable to most any experimental setup with confounding and complicated nuisance parameters
- IceCube Systematic targets:
 - Depth dependence of dust
 - Ice anisotropy
 - Hole Ice
 - DOM Efficiency
 - DOM Angular/Wavelength acceptance
- Individual, or groups of, frames will use uniquely perturbed set of nuisance parameters
- Analysis space would be reconstructed event energy, direction

SnowStorm in IceCube

How are perturbations currently stored in the sample?

- S Frames: 1 per sample, overall information about the perturbations
- M Frames: 1 per perturbed ice model in sample

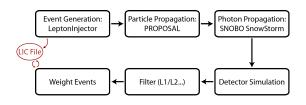
	Frame Element Key	Description
S	SnowstormParameterRanges	overall
	SnowstormParameterRanges SnowstormParametrizations SnowstormProposalDistribution	information about perturbations
М	SnowstormParameters	Parameters for perturbation

How is this applied? SnowSuite

SnowSuite

Suite of processors for Snowstorm

snobo/simprod-scripts/resources/scripts/SnowSuite

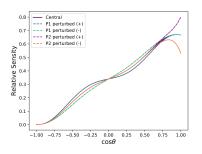


- built in the snobo branch of combo metaproject
- Implemented for generation through detector simulation
- Ready for people to use!

SnowSuite Details

- Based on Spencer Axani's SPE Templates
- ullet Photon propagation uses implementation of Jakob van Santen's 'Hobo Multisim' o SNOBO Snowstorm

SNOBO Snowstorm


Photon Propagation - SNOBO SnowStorm

- Runs in slightly modified version of CLSim
- Runs several short I3 trays, each with a perturbed Ice/DOM model
- CLSim model configuration saved between mini-trays
- Perturbation applied after chosen number of frames

Frame	Frame Element Key	Description
М	AngularAcceptance	MSU Hole Ice Model
	MediumProperties	scaled anisotropy strength
	WavelengthAcceptance	scaled overall
	SnowStormParameters	Depth Dependent Ice Params

Angular Acceptance

Probability of DOM photon acceptance with respect to photon incident angle

Following MSU Forward Hole Ice Model parametrization

$$P_{p_1,p_2}(\theta) = 0.34 (1 + 1.5 \cos \theta - \cos^3 \theta/2) + \dots /$$

$$/\dots + p_1 (\cos \theta) (\cos^2 \theta - 1)^3 p_2 \exp (10 (\cos \theta - 1.2))$$

Four Test Samples

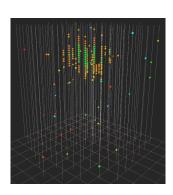
Four Test Samples

- Generated to provide small test sample for familiarization and practicing techniques
- Generation up through detector simulation
- Run through SnowSuite (though using simpleinjector for generation)

Sample is currently up on the cobalts at

/data/user/bsmithers/runs/chiba_sample/

See 'notes' file for specifics.


Test Sample Generation

Generation Information

- 1000 events each
- 100 TeV e⁻ cascades
- DOM Oversize of 5.0

Four different parts of IceCube

- Edge: 4-500m from IceCube center
- Deep Cube: >400m below IceCube Center
- Dust Layer
- Top Center

Steamshovel rendering of event in the 'top center'

Larger Sample

Generated for the global fit effort

- $\bullet \, \sim 5 \times 10^5$ NC and CC events
- All Flavors, All neutrino
- 1TeV to 10PeV generated at E^{-1}

```
/data/user/bsmithers/runs/snobo_large/
```

LeptonInjector, Snowstorm, SnowSuite

Fun Sample Projects

Ideas

- Building Snobo metaproject and running SnowSuite scripts
 - Scripts are written for Python 3, may need small changes for Python 2
- Load i3 files in dataio-pyshovel, or steamshovel. Examine frame structure
- Run basic L1/L2 scripts on detector level files
- Perform some basic event reconstruction
- Extract one nuisance gradient element
 - But which?

Summary Slide (1/2)

Snowstorm

- Read more about it https://arxiv.org/abs/1909.01530
- Treatment for systems with complicated sources of systematic uncertainties
- Continuous sampling of nuisance parameters
- Single MC sample can account for all systematics

Summary Slide (2/2)

SnowSuite

- processor group for generation through detector sim
- Application of Snowstorm application of ice+dom systematics
- A few samples already available
- More to come!

needpix.com

snobo/simprod-scripts/resources/scripts/SnowSuite

Thank you!

September 15th 2019