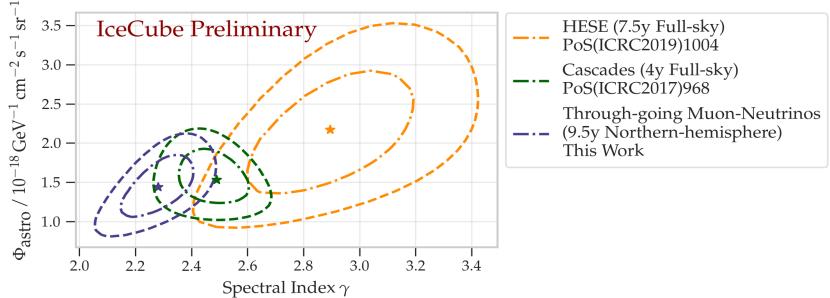
What can we do as intermediate steps until the global fit is ready ?

(a.k.a. Diffuse numu + HESE consistency checks and combined fit)



Sponsored by:

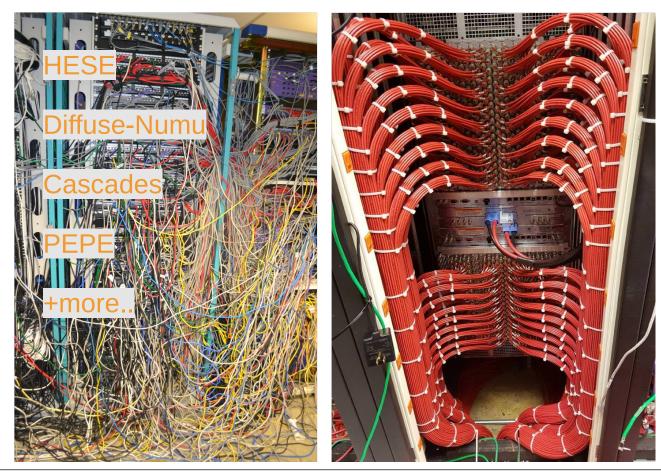
Federal Ministry of Education and Research

Status of Diffuse

- HESE:
 - 7.5 years of data (Pass2), rather soft best-fit single power-law (SPL)
 - Latest update shown at ICRC/Neutrino2018. paper draft just circulated
- Hans' cascade analysis:
 - 6 years of data (Pass1+charge correction), best-fit SPL in between
 - Paper draft is out (plot above shows only 4 years, because this is what was presented at ICRC2017 and was citable)
- DiffuseNuMu:
 - 9.5 years of data (Pass2), harder best-fit SPL

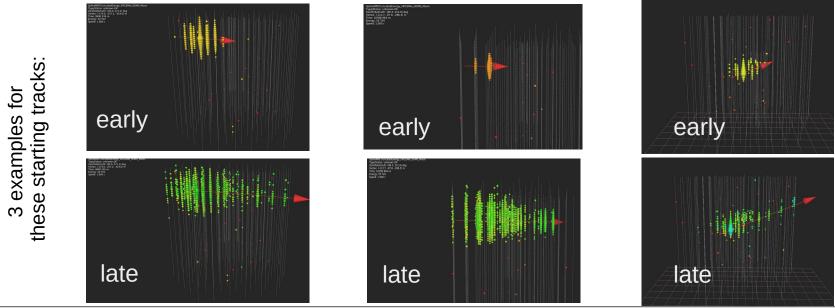

Short-term: What can we do as intermediate step ?

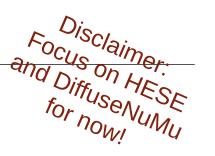
- A proper treatment of all datasets requires new simulations etc...
 - \rightarrow that's why we are all here
- On a shorter time-scale: What can we do to give an approximate answer of the global picture in diffuse?
- Idea that came up during HESE and DiffuseNuMu unblindings:
 - We have multiple analyses, each with its own MC / systematics treatment / fitting tools...
 - The datasets are mostly independent (or can be separated easily)
 The likelihoods per englysis are independent.
 - \rightarrow The likelihoods per analysis are independent
 - \rightarrow Global LLH can be obtained as sum of the per-analysis-LLHs


\rightarrow Global LLH can be obtained as sum of the per-analysis-LLHs

"It's a bit ugly, but it could work.."

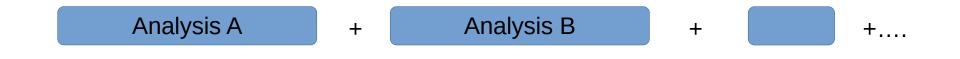
+ has the advantage that we can start right away and use the existing analyses/samples we have


→ How the globalfit will hopefully look like!



1) Make samples and MCs disjunct

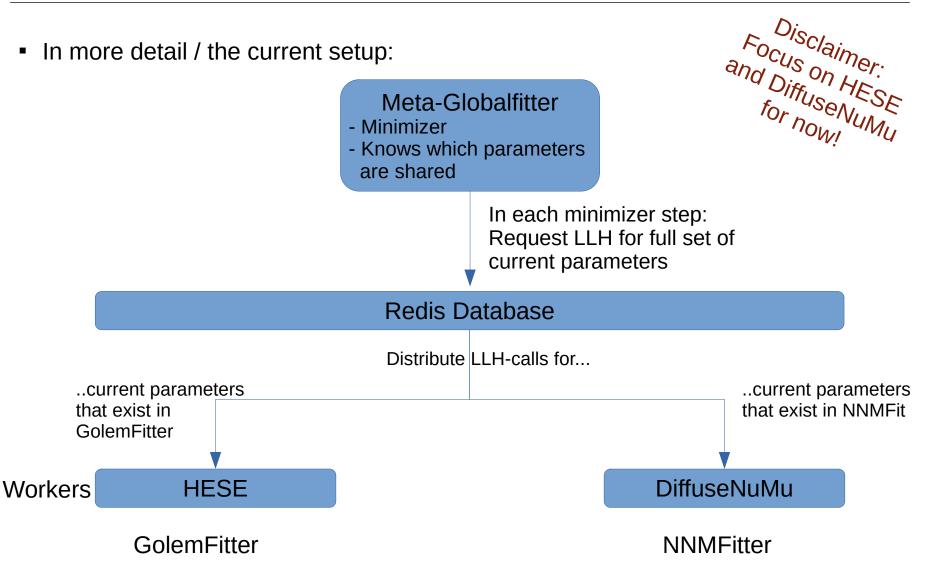
- Only then, the per-analysis-LLHs are independent and can be summed up
- Easiest way:
 - Keep HESE MC and sample as it is
 - Apply HESE cuts to the other sample to remove overlap
 - For DiffuseNuMu:
 - Removed 4655 events from baseline MC
 - Removed 10 events from Pass2-dataset:


2) Build a Meta-Fitter to optimize all parameters simultaneously

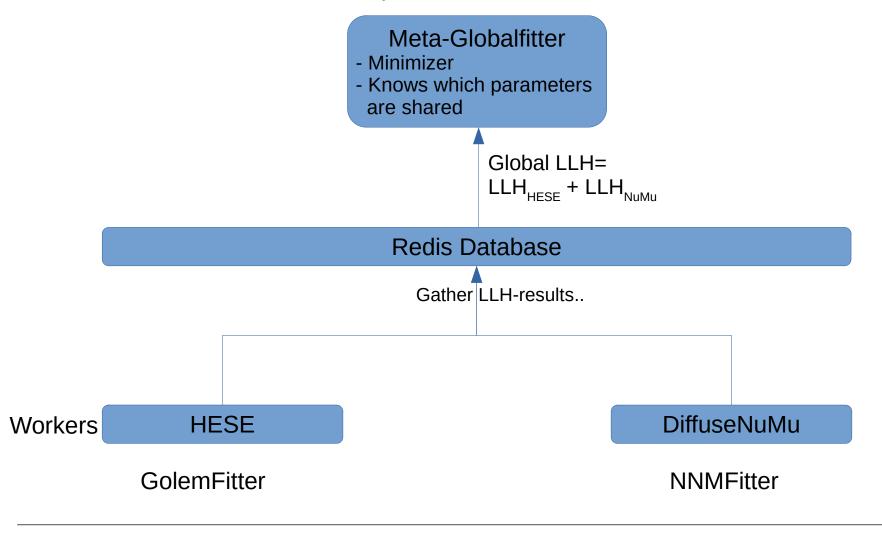
- Idea is to keep things simple and build on existing code/knowledge/tweaks as much as possible:
 - Each analysis stays in it's own sandbox
 - → GolemFit (github) for HESE
 - → NNMFit (github) for DiffuseNuMu

(load MC, tweaks+tricks, systematics handling etc..)

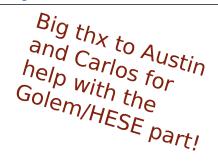
 Communication between meta-fitter and analyses via python-redisqueue (https://python-rq.org/)


Meta-Globalfitter

2) Build Meta-Fitter to optimize all parameters simultaneously


In more detail / the current setup:

2) Build Meta-Fitter to optimize all parameters simultaneously


In more detail / the current setup:

2) Meta-Fitter round-trips

Got a running version

- Round-trip tests:
 - a) Meta-Fitter + HESE-worker \rightarrow HESE best-fit ?

HESE :::: pars= 'promptNorm': 0.0, 'astroNorm': 6.45, 'astroDeltaGamma': 2.88

 \rightarrow same bestfit as HESE ICRC proceedings $^{\circ}$

2) Meta-Fitter round-trips

Got a running version

• Round-trip tests:

```
a) Meta-Fitter + HESE-worker \rightarrow HESE best-fit ? 
b) Meta-Fitter + NuMu-worker \rightarrow NuMu best-fit ?
```

```
NuMu ::::: pars=
'astro_norm': 1.49', 'prompt_norm': 0.0, 'gamma_astro': 2.28
```

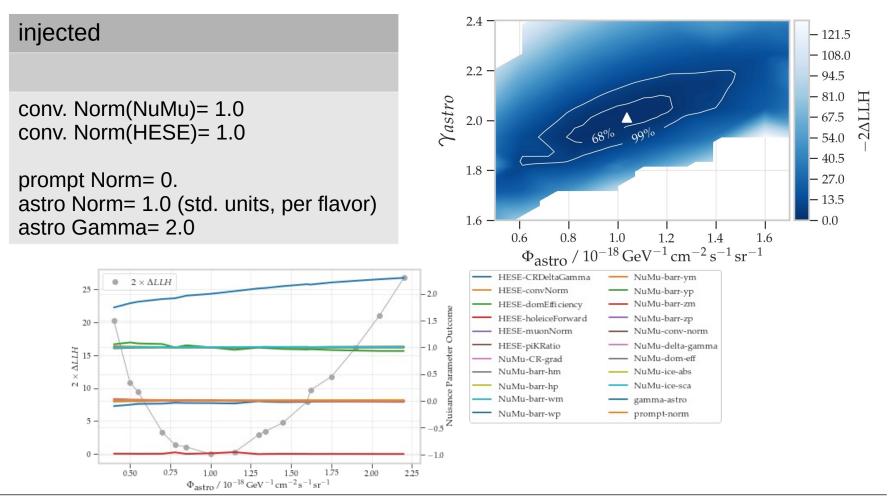
 \rightarrow same bestfit as NuMu ICRC proceedings

2) Meta-Fitter round-trips

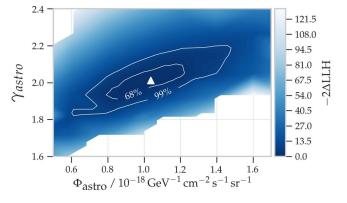
Got a running version

- Round-trip tests:
 - a) Meta-Fitter + HESE-worker \rightarrow HESE best-fit ?
 - b) Meta-Fitter + NuMu-worker \rightarrow NuMu best-fit ?
 - c) Asimov dataset created for both analyses:

Tested with Meta-Fitter + NuMu-worker + HESE-worker


injected	fit-result	
conv. Norm(NuMu)= 1.0 conv. Norm(HESE)= 1.0	conv. Norm (NuMu) = 0.99 conv. Norm (HESE) = 0.96	\checkmark
prompt Norm= 0. astro Norm= 1.0 (std. units, per flavor) astro Gamma= 2.0	prompt Norm (shared) = 0.008 astro Norm (shared) = 0.98 astro Gamma (shared) = 1.99	•

2) Meta-Fitter LLH-scan


 Asimov dataset created for both analyses: Tested with Meta-Fitter + NuMu-worker + HESE-worker

- Short-term: What can we do as intermediate step before the global fit is ready?
- Idea: Keep all samples/analyses/tools as they are, perform meta-fit on disjunct samples
- Status: We have a running version of HESE+DiffuseNuMu
 - Minimizes all parameters at once, systematics are separated per analysis
 - Includes the gradient per analysis to help the minimizer
- Proposal:
 - No new unblinding
 - Working-Group approval? If no strong objections, we could apply it to data during the meeting...

- Outlook:
 - Get more analyses/samples into the framework
 → already talked to Hans about the cascades
 - Don't spend too much time on this, we need manpower for the actual global-fit ;-)

