

MCEq and a universal treatment for systematic errors

Anatoli Fedynitch ICRR, University of Tokyo, Japan

September 14th 2019 Diffuse workshop on Global Fit @ Earthquake Research Institute, University of Tokyo

Origin of the series of models, methods and tools

Hans Dembinski Anatoli Fedynitch Ralph Engel Thomas K. Gaisser

Felix Riehn Todor Stanev

Atmospheric neutrinos

Ingredients for high-precision atmospheric neutrino flux calculation

- For <u>high precision</u> calculations all phenomena need accurate modeling
- Uncertain "ingredients":
 - Cosmic ray spectrum and composition
 - Hadronic interactions
 - Atmosphere (dynamic, depends on use case)
 - (Rare) decays
 - Geometry, magnetic fields, solar modulation
- No clear prescription how to handle uncertainties.
- Energy range MeV EeV!

Hadrons contributing to muonic leptons

Hadrons contributing to electron and tau neutrinos

Different hadronic components shape the zenith distribution

Transport equations (hadronic cascade equations)

MCEq: Matrix Cascade Equations

A. Fedynitch, R. Engel, T. K. Gaisser, F. Riehn and S. Todor PoS ICRC 2015, 1129 (2015), EPJ Web Conf. 99, 08001 (2015) and EPJ Web Conf. 116, 11010 (2016)

 $+\frac{1}{\rho(X)}(-\mathbf{1}+\mathbf{D})\mathbf{\Lambda}_{\mathrm{dec}}\vec{\Phi}$

| Diffuse workshop on Global Fit | 2019/09/14 ERI, U. Tokyo | Anatoli Fedynitch

Sparse matrix structure

mbda0

MCEq vs (thinned) CORSIKA calculation in 1D

Inclusive muon neutrino flux ratio CORSIKA/MCEQ. QGSJET-II-03 + H3a.

> BSD licensed @ <u>https://github.com/afedynitch/MCEq</u>

Page 10

SIBYLL2.3c **EPOS-LHC HKKMS 2015** Sinegovskaya et al. SIBYLL2.1 QGSJET-II-04 Bartol 2004 10⁻¹ . $v_e + \bar{v}_e$ $v_{\mu} + \bar{v}_{\mu}$ 10 $E^{3} \Phi (\text{GeV}^{2} \text{ cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1})$ $E^{3}\Phi$ (GeV² cm⁻² s⁻¹ sr⁻¹) 10 10 -3 -3 10 10 Ratio to SIBYLL2.3c Ratio to SIBYLL2.3c 1.5 1.5 1.00.5 0.5 10² 10^{3} 10^{4} 10^{5} 10^{2} 10^{3} 10^{5} 10 10 10 Muon neutrino energy (GeV) Electron neutrino energy (GeV)

- Old 2002 (GH) primary model for HKKMS and Bartol, H3a for the rest
- Data can not discriminate between calculations
- Shown are zenith and azimuth averages

MCEq vs. traditional calculations

HKKMS: M. Honda et al., PRD 92 (2015) Bartol: G. Barr et al., PRD 70 (2004) Sinegovskaya et al. PRD 91 (2015) MCEq: AF, R. Engel in prep.

Hadronic model dependence of zenith distributions

- Good agreement above tens of GeV for muon neutrinos
- Some tension between calculations at the horizon in electron neutrinos
- Affected by K/Pi, K⁺⁻/K⁰_L ratios

Hadronic uncertainties: re-spin of Barr et al. approach

- "Uncertainties in atmospheric neutrino fluxes", G. D. Barr, S. Robbins, T. K. Gaisser, and T. Stanev, Phys. Rev. D 74, 094009 (2006) (extensive discussion also in Sanuki et al. PRD 75 (2007)
- Cut phase-space in regions/slices in E_{lab} and x_{lab} and assign uncertainty to each slice (uncorrelated)
- Uncertainty assigned by hand and not derived from data. Assignment based on availability of data, not how well the model [TARGET2.1] describes it
- Many "free" parameters with unclear correlations

Phase space regions

MCEq-based implementation

"Barr regions"

$E_i (GeV)$ Pic		ons			Kaons						
<8	10%		30%				40	%			
8-15	30	% 10%			30%		40%				
15-30	30	10	5%		10%		30 20	C	10%		
30-500	30	30 15%				40	3	30%			
>500	30	15%+Energy dep.				40	30%+Ei	nergy	dep.		
()	I	0.	5	X _{LAB}	1	0	0.	5	X _{LAB}	1

- Compute partial derivatives wrt. phase-space regions (Taylor expansion), i.e. $\frac{\partial \Phi_{\nu}}{\partial W}$
- No correlations between phase-space regions (as in Barr et al.) or add. correlations

Elements of Jacobian (numerical)

$$J_{E_ij} = \frac{\partial \Phi_{\nu}(E_i)}{\partial p} = \frac{\Phi_{\nu}(\delta p_j +) - \Phi_{\nu}(\delta p_j -)}{2\delta p_j}$$

Error propagation

$$\operatorname{cov}[\Phi_{\nu}(E_i), \Phi_{\nu}(E_j)] = \sum_{mn} J_{E_im} J_{E_jn} \operatorname{cov}[p_m, p_l]$$

... impact on flux

Computation of error bands through error propagation

| Diffuse workshop on Global Fit | 2019/09/14 ERI, U. Tokyo | Anatoli Fedynitch

Contribution of individual "Barr groups"

Correlations between phase-space patches unclear

Examples	For one "Barr" - parameters
symmetric	ρπ⁺↑ nπ⁺↑ pπ⁻↑ nπ⁻↑
asymmetric	pπ⁺↑ nπ⁺↑ pπ⁻↓ nπ⁻↓
uncorrelated	pπ⁺↑ nπ⁺0 pπ⁻0 nπ⁻0

- The production of charged secondaries is physically not independent
- It is very difficult to extract this information from hadronic interaction models directly

Calibration of ν uncertainties with "global fit" to μ data

Experiment	Energy (GeV)	Measurements	Reported unit	Location	Altitude	Zenith range
AMS-02	0.1-2500	Flux & charge ratio	rigidity	$28.57^\circ N$, $80.65^\circ W$	5 m (sea level)	
BESS-TeV	0.6-400	Flux	momentum	36.2°N, 140.1°W	30 m	0-25.8°
CMS	5-1000	Charge ratio	momentum	46.31°N, 6.071°E	420 m	$p\cos\theta_z$
L3+C	20-3000	Flux & charge ratio	momentum	46.25°N, 6.02°E	450 m	0-58°
MINOS	1000-7000	Charge ratio	total energy	47.82°N, 92.24°W	5 m (sea level)	unfolded
OPERA	891-7079	Charge ratio	total energy	42.42°N, 13.51°E	5 m (sea level)	$E\cos\theta^*$

(Gev)

DEIS

| Diffuse workshop on Global Fit | 2019/09/14 ERI, U. Tokyo | Anatoli Fedynitch

Juan Pablo Yanez and AF, Neutrino 2018 + ICRC 2019

How we did it

- New version the cascade code MCEq with improved accuracy at low E
- Cut secondary particle phase-space according to parameters B_i from Barr et al.
- Generate database of fluxes $\Phi(E_{\mu})$ and Jacobians

$$\frac{\partial \Phi(E_{\mu})}{\partial \mathscr{B}_{i}} = \frac{\Phi(E_{\mu}, \mathscr{B}_{i} = 1 + \delta) - \Phi(E_{\mu}, \mathscr{B}_{i} = 1 - \delta)}{2\delta}$$

• Fluxes with modifications to B_i can be quickly evaluated in the fit:

$$\Phi(E_{\mu},\mathscr{B}_{a},\mathscr{B}_{b},\dots) = \Phi(E_{\mu}) + \sum_{i} \mathscr{B}_{i} \frac{\partial \Phi(E_{\mu})}{\partial \mathscr{B}_{i}}$$

What we found

- Original attempt was to use the parameterization of Barr et al.
 - 1. Found data to be insensitive
 - 2. Too many correlations
 - 3. Impossible to constrain

- Simplified to four parameters
 - Yields of each meson species
 - Global, energy-independent scales
 - Enough to describe data

Some experiments are hard to fit

- Some experiments are hard to fit regardless of modifications
- Possible systematic effects not reported
- Additional modifications will be included in next iterations of the study

Deviations of experimental parameters at best fit point

Impact of energy threshold for the fit

- High energy data less sensitive
- This is because the features in the muon spectrum are smooth
- and fit variables become strongly correlated
- More angles are needed
- We're investigating horizontal and high-altitude balloon data

Fit results

- Some experiments are hard to fit regardless of modifications
- Possible systematic effects not reported
- L3+C previously "the reference dataset" – is not as good as we thought
- We will include more data and CR flux uncertainties in the next iteration and report later this year

Fit parameters and correlations

- With sufficiently low threshold (5 GeV) the correlations are reduced
- Errors between a few to ten %
- Neutrino flux errors in the range covered by fit comparable to kaon errors

Parameter	Best fit	Error
$\overline{c_{\pi^-}}$	+0.141	± 0.017
c_{π^+}	+0.116	± 0.016
c_{K^-}	+0.402	± 0.073
c_{K^+}	+0.583	± 0.055

Alternative under investigation: data-driven inclusive interaction model

ПΠ

"The SHIn-project"

NA49 pp data (158GeV)

Conclusions and future path

- Current atmospheric neutrino detectors cover 9 orders of magnitude in energy (MeV-PeV) → challenge for modeling!
- High-precision (and high-performance) calculations available through MCEq that well match full Monte Carlo
- Unsolved problems remain, in particular hadronic interactions, but data-driven techniques can improve the precision as in the HKKM calculations or our muon fit. However, the parameterization has to be revised
- Work is progressing on building a purely accelerator data driven model. Delays because NA61 presents data in different, incompatible formats and communication is not working.
- The tools allow to handle flux systematics in data analysis, replacing effective parameters with more physical (but not perparameters

Enjoy your stay in Tokyo and happy discoveries!

Results of the fit on fluxes

Name	value, error
π+: G	0.13±0.10
π+: H	0.30±0.03
K+: W	0.14±0.08
K+: Y	0.47±0.07
π ⁻ : G	0.44±0.08
π ⁻ : Η	0.16±0.04
K-: W	0.20±0.10
K⁻: Y	0.11±0.07

Results of the fit

Name	value, error
π+: G	0.13±0.10
π+: H	0.30±0.03
K+: W	0.14±0.08
K+: Y	0.47±0.07
π ⁻ : G	0.44±0.08
π ⁻ : Η	0.16±0.04
K-: W	0.20±0.10
K-: Y	0.11±0.07

Cosmic ray flux uncertainties – 'bracketing' overestimates

Global Spline Fit – fit to direct & indirect observations

H. Dembinski, AF, T. Gaisser PoS(ICRC2017)533

- Fit four independent mass groups, which cover equal ranges in InA: proton (p), helium (He), oxygen group (O*), and iron group (Fe*)
- Assumption: this holds at all energies
- One leading element *L* per group described by smooth spline curve
- Other elements *j* in a group kept in constant ratio: $J_i(R)/J_L(R) = const.$

Mass sensitivity of air-shower experiments is ~ InA

Handling energy-scale uncertainty

Original data

- The determination of energy scale in airshower experiments is uncertain
- This is caused by inconsistencies of hadronic interaction models
- Fit adjusts energy scales within systematic uncertainties of the experiment

$$\tilde{J}(\tilde{E}) = J(E) \frac{\mathrm{d}E}{\mathrm{d}\tilde{E}} = J\left(\frac{\tilde{E}}{1+z_E}\right) \frac{1}{1+z_E}$$

Flux distortion caused by energy-scale offset z_F

$$S = \sum_{i} z_{i}^{2} + \sum_{j} \left(\frac{z_{Ej}}{(\sigma[E]/E)_{j}} \right)^{2}$$
Flux residuals Energy-scale offset residuals

H. Dembinski, AF, T. Gaisser

PoS(ICRC2017)533

Handling energy-scale uncertainty

Adjusted data

H. Dembinski, AF, T. Gaisser PoS(ICRC2017)533

- The determination of energy scale in airshower experiments is uncertain
- This is caused by inconsistencies of hadronic interaction models
- Fit adjusts energy scales within systematic uncertainties of the experiment

$$\tilde{J}(\tilde{E}) = J(E) \frac{\mathrm{d}E}{\mathrm{d}\tilde{E}} = J\left(\frac{\tilde{E}}{1+z_E}\right) \frac{1}{1+z_E}$$

Flux distortion caused by energy-scale offset $z_{\scriptscriptstyle F}$

The Global Spline Fit

More composition data needed

Fitted composition data

4-mass group experiments

★ PAMELA ■ AMS-02 ● CREAM ◇ TUNKA □ IceCube ○ Auger

Derived result: nucleon flux

AF et al, PoS(ICRC2017)1019

Dominated by proton flux. Details of sub-leading elements not important.

Harder spectrum at the knee due to lighter composition as assumed by 3-population models