Fractional Calculus

By David Gillcrist

 Introduce you to fractional calculus
Show you were it's been used

3. Show you were it might be useful

RICHARD HERRMANN

FRACTIONAL CALCULUS

AN INTRODUCTION FOR PHYSICISTS

Origins and Results

Start with a letter from l'Hospital to Leibniz

• If $\frac{d^n y}{dx^n}$ for $n \in \mathbb{Z}^+$ why not $n \in \mathbb{R}$ or $n \in \mathbb{C}$

d

Proposing extensions

$$\frac{d^{n}}{dx^{n}}x^{k} = \frac{k!}{(k-n)!}x^{k-n}$$
$$\frac{d^{\alpha}}{dx^{\alpha}}x^{k} = \frac{\Gamma(k+1)}{\Gamma(k-\alpha+1)}x^{k-\alpha}$$

ALBERTA

Different Derivatives

- Riemann-Liouville derivative
- Caputo derivative
- Riesz derivative
- Erdélyi–Kober derivative

Ex: $\begin{aligned} & \stackrel{c}{}_{a}D_{t}^{\alpha}f(t) \\ &= \frac{1}{\Gamma(n-\alpha)} \int_{a}^{t} \frac{f^{(n)}(\tau)}{(t-\tau)^{\alpha+1-n}} d\tau \end{aligned}$

INTERGRAL OPERATORS!

Applications

- Fractional quantum mechanics, first developed by Nick Laskin
- Fractional diffusion processes in anomalous materials
- A New paper discussing fractional effects in material for electrodynamics

$$i\partial_t \psi(x,t) = (-\Delta)^{\alpha/2} \psi + V(x) \psi + \beta |\psi|^2 |\psi|$$

THANK YOU