The Statistics of Survival

Ben 'benito' Smithers

000
Particle Astrophysics Center
UT Arlington
June $14^{\text {th }} 2019$

The Cowboy Problem

A number of cowboys walk into a bar.

The Infinite Cowboy Problem

A countably infinite number of cowboys walk into the Infinity Bar.

RIP Cowboys

Suddenly and simultaneously, all cowboys draw their guns and shoot with unerring accuracy.

Each targets and shoots exactly one cowboy, chosen at random.

You are a cowboy.

RIP You?

What are the odds that you survive, given that you are one of the cowboys?

- No magic bullets
- Cowboys can shoot themselves
- A cowboy can be shot multiple times
- Countably infinite cowboys.
- Each and every cowboy gets to shoot

Finite Cowboy Problem?

(1) You are the only cowboy. You are the only target. You Die.

$$
P_{\text {survive }}=0
$$

Finite Cowboy Problem?

(1) You are the only cowboy. You are the only target. You Die.

$$
P_{\text {survive }}=0
$$

(2) Two Cowboys. $50 / 50$ chance you both don't shoot you

$$
P_{\text {survive }}^{2}=\frac{1}{2} \times \frac{1}{2}=\frac{1}{2}=\left(\frac{1}{2}\right)^{2}=\left(1-\frac{1}{2}\right)^{2}
$$

Finite Cowboy Problem?

(1) You are the only cowboy. You are the only target. You Die.

$$
P_{\text {survive }}=0
$$

(2) Two Cowboys. $50 / 50$ chance you both don't shoot you

$$
P_{\text {survive }}^{2}=\frac{1}{2} \times \frac{1}{2}=\frac{1}{2}=\left(\frac{1}{2}\right)^{2}=\left(1-\frac{1}{2}\right)^{2}
$$

(3) Three Cowboys.

$$
P_{\text {survive }}^{3}=\frac{2}{3} \times \frac{2}{3} \times \frac{2}{3}=\frac{4}{9}=\left(\frac{2}{3}\right)^{3}=\left(1-\frac{1}{3}\right)^{3}
$$

Far more Cowboys

n-cowboys

$$
P_{\text {survive }}^{n}=\left(1-\frac{1}{n}\right)^{n}
$$

Far more Cowboys

n-cowboys

$$
P_{\text {survive }}^{n}=\left(1-\frac{1}{n}\right)^{n}
$$

A lot more cowboys

$$
P_{\text {survive }}^{\infty}=\lim _{n \rightarrow \infty}\left(1-\frac{1}{n}\right)^{n}
$$

Far more Cowboys

n-cowboys

$$
P_{\text {survive }}^{n}=\left(1-\frac{1}{n}\right)^{n}
$$

A lot more cowboys

$$
P_{\text {survive }}^{\infty}=\lim _{n \rightarrow \infty}\left(1-\frac{1}{n}\right)^{n}
$$

Citing the work of Jacob Bernoulli (not Euler!)

$$
e^{x}=\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}
$$

It's always $0,1, e$, or $\pi \ldots$

$P_{\text {survive }}=1 / e$

