EVENT SELECTIONS IN ICECUBE

Manuel Silva Bootcamp 2019 June 14, 2019

UNIVERSITY OF WISCONSIN-MADISON

2777 B R V V V V V V

INTRODUCTION

- IceCube takes "pictures" of all these events....
- But how do you differentiate a muon from a neutrino? Astrophysical Neutrino vs Atmospheric Neutrino?

Filters! Cuts! Vetos! BDTs!

What particles are they searching for? Energy range? Do they have background contamination? What is this background?

EVENT SELECTIONS

DIFFUSE

- Goal of group is to identify and measure atmospheric and/or astrophysical neutrino properties
- All neutrino flavors of various energies

HESE

- High Energy (HE) Cut, Q_{tot} > 6000 PE
- Use outer layer of DOMs as veto region, cut on Starting Events (SE)

MESE

 Similar to HESE, but now add more veto layers for medium energies (ME)

HESE RESULTS

 High energy neutrinos, high astrophysical purity, equal preference for all flavors

DOUBLE PULSE

- Tau neutrino interacts within IceCube and produces a tau lepton
- Tau lepton travels before decaying, 2nd vertex

DOUBLE PULSE

 Use waveform from DOMs, apply series of cuts on the shape of the waveform

DOUBLE PULSE RESULTS IceCube found

tau neutrinos!!

- 2 additional techniques underway to validate each other
 - **Double Cascade Analysis**
 - **Deep Neural Network** Analysis

- Enhanced Starting Track Event Selection
- Prefer downgoing muon neutrinos, will need to veto atmos. muons
- DOM with first PE combined with track
 create the "dark region"

Probability to not see any PE in the dark

region, pmiss

 $log(p_{miss}) = \sum_{i}^{All \ Veto \ Region \ DOMs} log(p(\lambda_i(\hat{a}, 0)))$

- Straight cut on Pmiss
- 100 million muons
 per year reduced to
 10 thousand

- Use a Boosted Decision Tree (BDT) to minimize muons entering our final event selection
- Use 16 event properties as input to the BDT, in the end the BDT ranks them in order of "importance"

Z of entry position	Distance to from first millipede loss to edge (closest)	Fraction of energy in first millipede loss	Distance to edge along track	P _{miss} from segmented track calculation
Number of millipede losses	Total energy of millipede losses	Fraction of hits that are direct	Length of millipede losses	Millipede zenith angle
Fraction of charge on edge of detector	Number of fits tested in coarse search	LineFit speed	P _{miss} from Cherenkov calculation	Millipede ↔ LineFit space angle

 Most important inputs according to the BDT shown here

 The BDT assigns a probability of being a muon vs muon neutrino, apply a single cut now on BDT score

 Cut on score such that muon rate is < I muon per year

ESTES - RESULTS

ESTES was able to validate 3 different published diffuse measurements

OSCILLATIONS

- 2 different event selection used up to 2019, <u>different</u> <u>physics goals</u>
- GRECO and DRAGON
 now united under
 OscNext framework
- Low energy neutrinos, primarily atmospheric

<u>Cred:</u> Jan Weldert

OSCNEXT

OSCNEXT

- Few strings in DeepCore means "noise" can accidentally be interpreted as a muon
- Simple Cut on time between pulses in adjacent DOMS
 - Time between pulses $< 5 \ \mu s$
- Two BDTs now required to filter muons
 - Level 4 and 5

LEVEL 4

- DOMs have noise that can be interpreted as low energy event
- Use 5 variables as input
- Cut = 0.7 reduces noise rate by over 100
- IC2018_LE_L3_Vars.NchCleaned
- L4_micro_count.STW_m3500p4000_DTW200
- L4_iLineFit.speed
- L4_fill_ratio.fillratio_from_mean
- IC2018_LE_L3_Vars.FullTimeLengthRatio

LEVEL 5

- Primary background are now "clean" muons, time to filter them out!!
- Use real data and train against simulated neutrinos using BDT

- IC2018_LE_L3_Vars.ICVetoHits
- IC2018_LE_L3_Vars.NAbove200Hits
- IC2018_LE_L3_Vars.RTVeto250Hits
- IC2018_LE_L3_Vars.NchCleaned
- ▶ L4_VICH_nch

- L4_accumulated_time
- L4_first_hlc_rho
- SRTTWOfflinePulsesDCHitStatistics.cog_z
- SRTTWOfflinePulsesDCHitStatistics.z_sigma
- SRTTWOfflinePulsesDCHitStatistics.z_travel

LEVEL 5

- Extract probabilities and apply single cut
- Note: overtraining is sometimes an issue when using BDTs, always consult your resident machine learning expert

OSCNEXT - STATUS

- Muon rates decreased from ~10⁴ to ~1 per millisecond, neutrino rates barely affected
- Still much work to do in Oscillations group!!

June 14, 2019

NU SOURCES

- Use muon tracks, need fast turn-around time
- All sky or northern/southern sky

GFU/FAST RESPONSE

- We want a very high purity of astrophysical neutrinos
- BDT used for northern sky tracks, <u>definitions found here</u>
- Similar but fast response is faster

BayesLLHRatio OnlineL2_BestFit_LineFit_DeltaAngle MPE_ldirC MPE_ndirC LineFit_speed OnlineL2_BestFit_zenith logMuE Plogl3p5 MaxSplitDelZenith CosSplitMinZenith Separation LEmpty_divby_LDirC Sall log10QTot Dist2COG

GFU/FAST RESPONSE

 Chose cut on BDT score, 80% efficiency astrophysical neutrinos

June 14, 2019

NORTHERN NUMU

- Start at IceCube level3 data→wiki
- Use 10 variables as input to Adaptive Boosting BDT \rightarrow wiki
- Cut on BDT score and cos(zenith), low statistics means that you have to do a little manual tuning yourself

NORTHERN NUMU

NU SOURCES RESULTS

• IceCube 3σ evidence blazers emit neutrinos

SUMMARY

- Various event selection techniques in IceCube
- Pick an event selection best suited for your particular analysis
- If it doesn't exist yet, make your own!!
 - Or contribute to ongoing efforts...

WELCOME

reaching IceCube, entire Earth before reaching muon+neutrino rich IceCube, neutrino rich

Manuel Silva - Event Selections

NEUTRINO SOURCES

- Full list of datasets already processed and ready for use
- Choose the "best" for your analysis

Dataset	Creator	Description	
Point Source Tracks	S.Coenders, T.Carver	All-sky sample of numu tracks optimized for point sources (IC86 2012-2017 updated by T.Carver)	
Gamma-ray Follow-up (GFU) with online reco	T.Kintscher	All-sky numu tracks designed for quick response analyses. Quick reco online.	
Gamma-ray Follow-up (GFU) with offline reco	T.Kintscher	All-sky numu tracks designed for quick response analyses. Re-processed offline for better sensitivity.	
Northern Tracks	R.Reimann	Northern sample of numu tracks, same as used for diffuse analysis of northern sky	
Fast Response	K.Meagher	All-sky numu tracks designed for quick response analyses	
Low Energy Starting Events	M.Richman	Low energy starting events	
STeVE	M.Richman	Something with starting events	
Transient Tracks	A.Pizzuto Northern numu tracks designed for short timescale analyses like GRB/FRB		
Gamma Rays Z.Griffith		PeV scale gamma-ray events from IceCube & IceTon	