DOMs and the DAQ Demystified Part II: DAQ, Triggers, Filters, and more

John Kelley UW-Madison

IceCube Bootcamp, 2019-06-10

with thanks to Dave Glowacki, Naoko K. Neilson, Erik Blaufuss

Data flow and reduction

DAQ (Data Acquisition System)

- DOMs generate **hits**: PMT waveform(s) + a timestamp
- We don't want to (and can't) save every hit from every DOM all the time
 - but we do save them for ~6 days in *hitspool* buffers
- The DAQ forms **triggers** when a pattern of hits looks interesting
 - many definitions of "interesting": muons, cascades, air showers, monopoles...
- Individual triggers are combined into a global readout window, or "event"

Trigger Types

- Simple Multiplicity Trigger (SMT)
 - N HLC hits or more in a time window
 - Example: InIce SMT8 with N_hits ≥ 8 in 5 μ s
 - readout window around this captures early and late hits (-4 μ s, +6 μ s)
- **String** trigger (a.k.a. Cluster trigger in DAQ-land)
 - *N* HLC hits out of *M* DOMs on a string in a time window
 - Example: 5 hits from a run of 7 adjacent DOMs in a time window of 1500 ns
- **Volume** trigger (a.k.a Cylinder trigger in DAQ-land)
 - simple majority of HLC hits (SMT4) with volume element including one layer of strings around a center string
 - cylinder height is 5 DOM-layers (2 up and down from the selected DOM).
- **Slow Particle trigger (SLOP)**
 - slow-moving hits along a track
 - lengths of the order of 500µs and extending up to milliseconds
- Fixed Rate trigger, Minimum Bias trigger, Calibration trigger

Simple Multiplicity Trigger

- At least N HLC hits in a sliding time window
- Trigger is extended as long as majority condition satisfied
- Readout windows extend both sides; capture early, late light and SLC hits

Sub-detector	HLC hits	Window (µs)	Rate (Hz)
In-ice	8	5	2100
DeepCore	3	2.5	250
IceTop	6	5	25

Topological Triggers

Volume trigger: *N* hits within a cylindrical volume around DOM in a time window

Trigger	HLC hits	Topology	Window (µs)	Rate (Hz)
Volume	4	cylinder r=175m, h=75m	1	3700
String	5	of 7 DOMs on string	1.5	2200

Specialized trigger: monopoles

T. Glüsenkamp

Signature of some exotic particles (magnetic monopoles, Q-balls, etc.): slow ($v \sim 0.001-0.01c$) tracks with intermittent cascades

SLOP Trigger

- Consider pairs of hits with LC condition
- Remove pairs if too close in time (T_{prox})
- Form 3-tuples of pairs within time window (T_{min}, T_{max})
- Track-like check on 3-tuples:
 - minimum inner angle α_{min}
 - normalized velocity difference v_{rel}
- Condition on minimum number of 3tuples

Trigger	N_{tuple}	T _{prox} (μs)	T _{min} , T _{max} (μs)	α_{min}	v _{rel}	Rate (Hz)
SLOP	5	2.5	[0, 500]	140°	0.5	12

Trigger Readout

Example global trigger

Real data from 2011

(trigger time, trigger length) in ns

Trigger	Rate (Hz)		
Inice SMT8	2113		
DeepCore SMT3	256		
SLOP	13.3		
FRT	0.0333		
String	2240		
Volume	3727		
MinBias	59.4		

Event rate from Run 120029: 2742 Hz

SNDAQ

Signal (10kpc, 61x1.6384ms binning)

- IceCube can also detect nearby supernovae: detection method very different
- The Supernova DAQ runs in parallel to the "normal" DAQ after the StringHubs
- · Collects noise rates vs. time for all in-ice DOMs
 - looks for global rise in noise rates across detector
 - sends alerts over Iridium satellite constellation to SNEWS
 - sends SMS alerts and e-mails

Online Filtering

- DAQ "raw" output: almost 1 TB/day
 - recall: vast majority of these are cosmic-ray muons
- TDRSS (satellite) bandwidth allocation for IceCube: 105 GB/day
- Options:
 - wait until we can fly the disks out (what if there's a problem with the data?)
 - run filtering online to look for interesting events; send subset of data over satellite

- **Bonus!** Can trigger other experiments for near-real-time followup
 - HESE, EHE, optical / gamma-ray followup alerts

What is a filter?

- A **filter** is the first stage of analysis that looks for a type of physics event at SPS, to send over the satellite
- Each working group proposes its own filter(s): muon, cascade, etc.
- The filters are run by **PnF**, which calibrates and cleans the data, looks for events containing triggers that the filters are interested in
 - fast, first-guess algorithms run on most events
 - loose "quality cuts" throw away the junk
- PnF then farms the events out to a computer cluster at pole

Processing and Filtering (PnF)

Filter Examples (not exhaustive!)

- Muon filter
 - hit cleaning -> calibration -> pulse extraction -> fast track reconstruction -> direction-dependent quality cuts
- Cascade filter
 - events that look more blob-like than track-like (tensor of inertia ratio)
- EHE filter
 - high-energy events (total NPE)
- Sun & Moon filter
 - events coming from current Sun and Moon position (WIMPs, moon shadow)
- IceTop filter
 - quality air shower events (also: in-ice coincidences)
- quite a few others for specific analyses

Muon Filter Passing Rate (simulation)

Real-time Alert System

SuperDST / WaveDeform

- Basic idea: send highly compressed version of almost every triggered event
 - send reconstructed pulses, not raw waveforms
 - unfold based on template SPE waveforms
- Deployed large-scale in 2012; unfolding is called WaveDeform

J. van Santen

SuperDST reconstructed waveforms

Raw payload: **4394 bytes** SuperDST: **414 bytes**

Raw waveforms ("seatbelts") are still sent for

- multichannel hits
- events where the unfolding is bad
- high charge

Triggering, Filtering, and Transmission Board

- How to balance needs of everyone wanting:
 - special DAQ trigger
 - special physics event filter
 - lots of satellite bandwidth
- TFT board reviews proposals once a year
 - changes are made at the "physics run start", typically in May
- Wiki is a good place to start for trigger / filter descriptions

http://wiki.icecube.wisc.edu/index.php/Trigger_Filter_Transmission_Board

Experiment Control and I3Live

For real-time detector status: <u>http://live.icecube.wisc.edu</u>

Some sources for more information

- Previous years' boot camp presentations
 http://wiki.icecube.wisc.edu/index.php/Bootcamp
- IceCube PMT Paper
 https://docushare.icecube.wisc.edu/dsweb/Get/Document-53922/

IceCube DOM-DAQ Paper

"The IceCube Data Acquisition Subsystem: Signal Capture, Digitization, and Time-Stamping" Nuclear Instruments and Methods in Physics Research A 601 (2009) 294–316 https://docushare.icecube.wisc.edu/dsweb/Get/Document-48249/

IceCube Detector Paper

"The IceCube Neutrino Observatory: instrumentation and online systems" Journal of Instrumentation **12** (2017) P03012 <u>https://arxiv.org/pdf/1612.05093.pdf</u>

- Wiki page for LED flashers http://wiki.icecube.wisc.edu/index.php/Flashers
- Docushare areas and personal websites

Docushare: <u>https://docushare.icecube.wisc.edu/dsweb/View/Collection-410</u> Jerry Przybylski: <u>http://icecube.lbl.gov/~gtp/site_map.html#ForIceCube</u> Thorsten Stezelberger: <u>http://glacier.lbl.gov/~thorsten/ATWD/</u> Nobuyoshi Kitamura: <u>http://icecube.wisc.edu/~kitamura/</u>

• N.B. many more details being taken care of like "toroid droop", baseline offsets, channel nonmatching, PMT saturation, afterpulses, more precise optical sensitivity measurement, ...

Some sources for more information

• I3Live documentation:

https://live.icecube.wisc.edu/doc/main/

• TFT proposals:

http://wiki.icecube.wisc.edu/index.php/Trigger Filter Transmission Board

• SuperDST:

http://software.icecube.wisc.edu/documentation/projects/dataclasses/superdst.html http://wiki.icecube.wisc.edu/index.php/SuperDST https://events.icecube.wisc.edu/indico/contributionDisplay.py?contribId=140&sessionId=4&confId=33

• Supernova DAQ:

http://wiki.icecube.wisc.edu/index.php/Supernova

- Monitoring: http://wiki.icecube.wisc.edu/index.php/Monitoring
- Problem DOMs:

https://live.icecube.wisc.edu/dom_problems/ http://wiki.icecube.wisc.edu/index.php/Problem_DOMs (historical)