CTA and IACTs: A New Era in Astrophysics

A

Brent Mode 12 June 2019 For the IceCube Bootcamp

Motivations for TeV Gamma Ray Astronomy

Astroparticle Physics and Gamma Rays

Astroparticle physics over 13 orders of magnitude

Gamma rays over 9 orders of magnitude

12 June 2019

Brent Mode

The Thermal v. Non-Thermal Universe

- Black body radiation is responsible for much of the low energy light in the universe
- Even some gamma rays can come from very high energy thermal events
- Most gamma rays will come from non-thermal processes, as the associated black body temperature peaked at 1 TeV is 10 quadrillion K

12 June 2019

Brent Mode

CTA

•

Non-thermal Mechanisms of Gamma Ray Production

- Production of gamma rays in particle physics can occur through a variety of mechanisms
- Each of these processes can create gamma rays in astrophysical sources
- Inverse Compton scattering is a particularly important source of astrophysical gamma rays

magnetic field electron (1) Synchrotron (electromagnetic) (2) Inverse Compton (electromagnetic) electron proton V

(3) Bremsstrahlung (electromagnetic)

(4) Pion decay (hadronic)

photon

12 June 2019

Brent Mode

electron

Possible Gamma Ray Production from Dark Matter

- A possible fifth non-thermal source of gamma rays is exotic particle decay or interaction, like dark matter
- This gives rise to the indirect detection sector of the dark matter search
- It is complementary with the direct detection and accelerator production approaches
- This approach has the benefit of being potentially sensitive to more than one broad class of dark matter models

Multi-Messenger Astronomy

Astrophysical beam dump

- Using photons, neutrinos, cosmic rays, and gravitational waves, we can study astrophysical sources and transient objects much more thoroughly than ever before
- Different astrophysical sources emit different particles and at different energies, allowing for multi-instrument, coordinated observations

12 June 2019

The Universe in >1 GeV Gamma Rays

Fermi Large Area Telescope

12 June 2019

Physics with TeV Gamma Ray Telescopes

12 June 2019

Imaging Atmospheric Cherenkov Telescopes: A technique for TeV gamma-ray astronomy

The Atmosphere is Opaque to Gamma Rays

12 June 2019

Atmospheric Cherenkov Radiation

- Optical frequency (blue) light
- Very short (few ns) exposure to limit night sky background
- Cherenkov cone very narrow, ~1°:
- $\theta = \arccos \frac{1}{n\beta}$
- 1000-1500 hours per year (dark, good weather)

12 June 2019

Cherenkov Light Pool from Vertical Shower

- At high altitude, density is small, index of refraction is close to 1, and Cherenkov angle is small
- Towards ground level, each of these increases
- Light pool of radius ~120-140 m on ground

12 June 2019

First IACT: Whipple 10 m Telescope at FLWO

- Pioneer imaging atmospheric Cherenkov telescope
- Discovered the first very-high energy (TeV) astronomical sources
 - Crab Nebula: 1989
 - Markarian 421 (1992): a nearby blazar
 - Markarian 501 (1997): another nearby blazar

12 June 2019

Two Telescopes are Better Than One

12 June 2019

Current Generation of Stereo IACTs

12 June 2019

12 June 2019

The Cherenkov Telescope Array

12 June 2019

Brent Mode

18

Cherenkov Telescope Array

	Telescope size	Energy range	South array	North array	2 arrays of differently sized
	23m	20GeV – 1 TeV	4	4	induced air showers
	9-12m	100Gev – 10TeV	25	15	
	3-4m	5 – 300 TeV	70		
				Mexico San Pedro Martir	
12 June 2	019		Brent	t Mode	 Under Negotiation Back-up Sites 19

CTA v. Fermi LAT

Fermi Dwarfs and CTA GC Will Cover Entire WIMP Mass Range Down to Thermal Cross Section

12 June 2019

Prototype CTA Telescopes Underway

Large, Canary Islands

Medium (1 mirror), Berlin

Medium (2 mirror), Arizona

1 mir Small:

2 mirror, Sicily

2 mirror, Paris

12 June 2019

CTA @ WIPAC: Developing the pSCT Camera

Cta pSCT

12 June 2019

Brent Mode

23

pSCT: Prototype Schwarzschild-Couder Telescope

Use two mirrors instead of one:

- Advantages:
 - Telescope can be more compact
 - Has wider field of view
 - Better resolution
- Need special technique for a-spherical mirror shaping:
 - optimized for maximum resolution and field of view
- Need fast high resolution camera:
 - possible through new developments in SiPM and ASIC technology

12 June 2019

pSCT Camera Organization

12 June 2019

TARGET C and FPM

- In the past, our group has been responsible for various research and development projects for the pSCT camera
- One of our current projects is working on comprehensive testing of the new TARGET C prototype to ensure that it meets rigorous CTA requirements
- We collaborate on this with groups at INFN Pisa in Italy, FAU in Germany, and Georgia Tech in Atlanta
- The pSCT camera group is a much larger group with members in the US and abroad.
- TeV array readout with GSa/s sampling and event trigger (TARGET)

12 June 2019

TARGET C Module

To Backplane —

12 June 2019

Brent Mode

Signal Input

First Light Event

12 June 2019

First Light Event

12 June 2019

Vandenbroucke Group @ UW - Madison

Thomas Meures

Leslie Taylor

Justin Vandenbroucke

Brent Mode

Ruby Kleijwegt